[Lattice L46-7]Home PageHome Quantum Logic Explorer
Theorem List (p. 4 of 13)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  QLE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for Quantum Logic Explorer - 301-400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnomcon0 301 Lemma for "Non-Orthomodular Models..." paper.
(a ==0 b) = (b' ==0 a')
 
Theoremnomcon1 302 Lemma for "Non-Orthomodular Models..." paper.
(a ==1 b) = (b' ==2 a')
 
Theoremnomcon2 303 Lemma for "Non-Orthomodular Models..." paper.
(a ==2 b) = (b' ==1 a')
 
Theoremnomcon3 304 Lemma for "Non-Orthomodular Models..." paper.
(a ==3 b) = (b' ==4 a')
 
Theoremnomcon4 305 Lemma for "Non-Orthomodular Models..." paper.
(a ==4 b) = (b' ==3 a')
 
Theoremnomcon5 306 Lemma for "Non-Orthomodular Models..." paper.
(a == b) = (b' == a')
 
Theoremnom10 307 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ->0 (a ^ b)) = (a ->1 b)
 
Theoremnom11 308 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ->1 (a ^ b)) = (a ->1 b)
 
Theoremnom12 309 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ->2 (a ^ b)) = (a ->1 b)
 
Theoremnom13 310 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ->3 (a ^ b)) = (a ->1 b)
 
Theoremnom14 311 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ->4 (a ^ b)) = (a ->1 b)
 
Theoremnom15 312 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ->5 (a ^ b)) = (a ->1 b)
 
Theoremnom20 313 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ==0 (a ^ b)) = (a ->1 b)
 
Theoremnom21 314 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ==1 (a ^ b)) = (a ->1 b)
 
Theoremnom22 315 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ==2 (a ^ b)) = (a ->1 b)
 
Theoremnom23 316 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ==3 (a ^ b)) = (a ->1 b)
 
Theoremnom24 317 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a ==4 (a ^ b)) = (a ->1 b)
 
Theoremnom25 318 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
(a == (a ^ b)) = (a ->1 b)
 
Theoremnom30 319 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
((a ^ b) ==0 a) = (a ->1 b)
 
Theoremnom31 320 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
((a ^ b) ==1 a) = (a ->1 b)
 
Theoremnom32 321 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
((a ^ b) ==2 a) = (a ->1 b)
 
Theoremnom33 322 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
((a ^ b) ==3 a) = (a ->1 b)
 
Theoremnom34 323 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
((a ^ b) ==4 a) = (a ->1 b)
 
Theoremnom35 324 Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper.
((a ^ b) == a) = (a ->1 b)
 
Theoremnom40 325 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ->0 b) = (a ->2 b)
 
Theoremnom41 326 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ->1 b) = (a ->2 b)
 
Theoremnom42 327 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ->2 b) = (a ->2 b)
 
Theoremnom43 328 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ->3 b) = (a ->2 b)
 
Theoremnom44 329 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ->4 b) = (a ->2 b)
 
Theoremnom45 330 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ->5 b) = (a ->2 b)
 
Theoremnom50 331 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ==0 b) = (a ->2 b)
 
Theoremnom51 332 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ==1 b) = (a ->2 b)
 
Theoremnom52 333 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ==2 b) = (a ->2 b)
 
Theoremnom53 334 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ==3 b) = (a ->2 b)
 
Theoremnom54 335 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) ==4 b) = (a ->2 b)
 
Theoremnom55 336 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
((a v b) == b) = (a ->2 b)
 
Theoremnom60 337 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
(b ==0 (a v b)) = (a ->2 b)
 
Theoremnom61 338 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
(b ==1 (a v b)) = (a ->2 b)
 
Theoremnom62 339 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
(b ==2 (a v b)) = (a ->2 b)
 
Theoremnom63 340 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
(b ==3 (a v b)) = (a ->2 b)
 
Theoremnom64 341 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
(b ==4 (a v b)) = (a ->2 b)
 
Theoremnom65 342 Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper.
(b == (a v b)) = (a ->2 b)
 
Theoremgo1 343 Lemma for proof of Mayet 8-variable "full" equation from 4-variable Godowski equation.
((a ^ b) ^ (a ->1 b')) = 0
 
Theoremi2or 344 Lemma for disjunction of ->2.
((a ->2 c) v (b ->2 c)) =< ((a ^ b) ->2 c)
 
Theoremi1or 345 Lemma for disjunction of ->1.
((c ->1 a) v (c ->1 b)) =< (c ->1 (a v b))
 
Theoremlei2 346 "Less than" analogue is equal to ->2 implication.
(a =<2 b) = (a ->2 b)
 
Theoremi5lei1 347 Relevance implication is l.e. Sasaki implication.
(a ->5 b) =< (a ->1 b)
 
Theoremi5lei2 348 Relevance implication is l.e. Dishkant implication.
(a ->5 b) =< (a ->2 b)
 
Theoremi5lei3 349 Relevance implication is l.e. Kalmbach implication.
(a ->5 b) =< (a ->3 b)
 
Theoremi5lei4 350 Relevance implication is l.e. non-tollens implication.
(a ->5 b) =< (a ->4 b)
 
Theoremid5leid0 351 Quantum identity is less than classical identity.
(a == b) =< (a ==0 b)
 
Theoremid5id0 352 Show that classical identity follows from quantum identity in OL.
(a == b) = 1   =>   (a ==0 b) = 1
 
Theoremk1-6 353 Statement (6) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
x = ((x ^ c) v (x ^ c'))   =>   (x' ^ c) = ((x' v c') ^ c)
 
Theoremk1-7 354 Statement (7) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
x = ((x ^ c) v (x ^ c'))   =>   (x' ^ c') = ((x' v c) ^ c')
 
Theoremk1-8a 355 First part of statement (8) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
x' = ((x' ^ c) v (x' ^ c'))   &   x =< c   &   y =< c'   =>   x = ((x v y) ^ c)
 
Theoremk1-8b 356 Second part of statement (8) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
y' = ((y' ^ c) v (y' ^ c'))   &   x =< c   &   y =< c'   =>   y = ((x v y) ^ c')
 
Theoremk1-2 357 Statement (2) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
x = ((x ^ c) v (x ^ c'))   &   y = ((y ^ c) v (y ^ c'))   &   ((x ^ c) v (y ^ c))' = ((((x ^ c) v (y ^ c))' ^ c) v (((x ^ c) v (y ^ c))' ^ c'))   =>   ((x v y) ^ c) = ((x ^ c) v (y ^ c))
 
Theoremk1-3 358 Statement (3) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
x = ((x ^ c) v (x ^ c'))   &   y = ((y ^ c) v (y ^ c'))   &   ((x ^ c') v (y ^ c'))' = ((((x ^ c') v (y ^ c'))' ^ c) v (((x ^ c') v (y ^ c'))' ^ c'))   =>   ((x v y) ^ c') = ((x ^ c') v (y ^ c'))
 
Theoremk1-4 359 Statement (4) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
(x' ^ (x v c')) = (((x' ^ (x v c')) ^ c) v ((x' ^ (x v c')) ^ c'))   &   x =< c   =>   (x v (x' ^ c)) = c
 
Theoremk1-5 360 Statement (5) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21.
(x' ^ (x v c)) = (((x' ^ (x v c)) ^ c) v ((x' ^ (x v c)) ^ c'))   &   x =< c'   =>   (x v (x' ^ c')) = c'
 
0.2  Weakly orthomodular lattices
 
0.2.1  Weak orthomodular law
 
Axiomax-wom 361 2-variable WOML rule.
(a' v (a ^ b)) = 1   =>   (b v (a' ^ b')) = 1
 
Theorem2vwomr2 362 2-variable WOML rule.
(b v (a' ^ b')) = 1   =>   (a' v (a ^ b)) = 1
 
Theorem2vwomr1a 363 2-variable WOML rule.
(a ->1 b) = 1   =>   (a ->2 b) = 1
 
Theorem2vwomr2a 364 2-variable WOML rule.
(a ->2 b) = 1   =>   (a ->1 b) = 1
 
Theorem2vwomlem 365 Lemma from 2-variable WOML rule.
(a ->2 b) = 1   &   (b ->2 a) = 1   =>   (a == b) = 1
 
Theoremwr5-2v 366 WOML derived from 2-variable axioms.
(a == b) = 1   =>   ((a v c) == (b v c)) = 1
 
0.2.2  Weakly orthomodular lattices
 
Theoremwom3 367 Weak orthomodular law for study of weakly orthomodular lattices.
(a == b) = 1   =>   a =< ((a v c) == (b v c))
 
Theoremwlor 368 Weak orthomodular law.
(a == b) = 1   =>   ((c v a) == (c v b)) = 1
 
Theoremwran 369 Weak orthomodular law.
(a == b) = 1   =>   ((a ^ c) == (b ^ c)) = 1
 
Theoremwlan 370 Weak orthomodular law.
(a == b) = 1   =>   ((c ^ a) == (c ^ b)) = 1
 
Theoremwr2 371 Inference rule of AUQL.
(a == b) = 1   &   (b == c) = 1   =>   (a == c) = 1
 
Theoremw2or 372 Join both sides with disjunction.
(a == b) = 1   &   (c == d) = 1   =>   ((a v c) == (b v d)) = 1
 
Theoremw2an 373 Join both sides with conjunction.
(a == b) = 1   &   (c == d) = 1   =>   ((a ^ c) == (b ^ d)) = 1
 
Theoremw3tr1 374 Transitive inference useful for introducing definitions.
(a == b) = 1   &   (c == a) = 1   &   (d == b) = 1   =>   (c == d) = 1
 
Theoremw3tr2 375 Transitive inference useful for eliminating definitions.
(a == b) = 1   &   (a == c) = 1   &   (b == d) = 1   =>   (c == d) = 1
 
0.2.3  Relationship analogues (ordering; commutation) in WOML
 
Theoremwleoa 376 Relation between two methods of expressing "less than or equal to".
((a v c) == b) = 1   =>   ((a ^ b) == a) = 1
 
Theoremwleao 377 Relation between two methods of expressing "less than or equal to".
((c ^ b) == a) = 1   =>   ((a v b) == b) = 1
 
Theoremwdf-le1 378 Define 'less than or equal to' analogue for == analogue of =.
((a v b) == b) = 1   =>   (a =<2 b) = 1
 
Theoremwdf-le2 379 Define 'less than or equal to' analogue for == analogue of =.
(a =<2 b) = 1   =>   ((a v b) == b) = 1
 
Theoremwom4 380 Orthomodular law. Kalmbach 83 p. 22.
(a =<2 b) = 1   =>   ((a v (a' ^ b)) == b) = 1
 
Theoremwom5 381 Orthomodular law. Kalmbach 83 p. 22.
(a =<2 b) = 1   &   ((b ^ a') == 0) = 1   =>   (a == b) = 1
 
Theoremwcomlem 382 Analogue of commutation is symmetric. Similar to Kalmbach 83 p. 22.
(a == ((a ^ b) v (a ^ b'))) = 1   =>   (b == ((b ^ a) v (b ^ a'))) = 1
 
Theoremwdf-c1 383 Show that commutator is a 'commutes' analogue for == analogue of =.
(a == ((a ^ b) v (a ^ b'))) = 1   =>   C (a, b) = 1
 
Theoremwdf-c2 384 Show that commutator is a 'commutes' analogue for == analogue of =.
C (a, b) = 1   =>   (a == ((a ^ b) v (a ^ b'))) = 1
 
Theoremwdf2le1 385 Alternate definition of 'less than or equal to'.
((a ^ b) == a) = 1   =>   (a =<2 b) = 1
 
Theoremwdf2le2 386 Alternate definition of 'less than or equal to'.
(a =<2 b) = 1   =>   ((a ^ b) == a) = 1
 
Theoremwleo 387 L.e. absorption.
(a =<2 (a v b)) = 1
 
Theoremwlea 388 L.e. absorption.
((a ^ b) =<2 a) = 1
 
Theoremwle1 389 Anything is l.e. 1.
(a =<2 1) = 1
 
Theoremwle0 390 0 is l.e. anything.
(0 =<2 a) = 1
 
Theoremwler 391 Add disjunct to right of l.e.
(a =<2 b) = 1   =>   (a =<2 (b v c)) = 1
 
Theoremwlel 392 Add conjunct to left of l.e.
(a =<2 b) = 1   =>   ((a ^ c) =<2 b) = 1
 
Theoremwleror 393 Add disjunct to right of both sides.
(a =<2 b) = 1   =>   ((a v c) =<2 (b v c)) = 1
 
Theoremwleran 394 Add conjunct to right of both sides.
(a =<2 b) = 1   =>   ((a ^ c) =<2 (b ^ c)) = 1
 
Theoremwlecon 395 Contrapositive for l.e.
(a =<2 b) = 1   =>   (b' =<2 a') = 1
 
Theoremwletr 396 Transitive law for l.e.
(a =<2 b) = 1   &   (b =<2 c) = 1   =>   (a =<2 c) = 1
 
Theoremwbltr 397 Transitive inference.
(a == b) = 1   &   (b =<2 c) = 1   =>   (a =<2 c) = 1
 
Theoremwlbtr 398 Transitive inference.
(a =<2 b) = 1   &   (b == c) = 1   =>   (a =<2 c) = 1
 
Theoremwle3tr1 399 Transitive inference useful for introducing definitions.
(a =<2 b) = 1   &   (c == a) = 1   &   (d == b) = 1   =>   (c =<2 d) = 1
 
Theoremwle3tr2 400 Transitive inference useful for eliminating definitions.
(a =<2 b) = 1   &   (a == c) = 1   &   (b == d) = 1   =>   (c =<2 d) = 1
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1215
  Copyright terms: Public domain < Previous  Next >