| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gomaex3lem3 | Unicode version | ||
| Description: Lemma for Godowski 6-var -> Mayet Example 3. |
| Ref | Expression |
|---|---|
| gomaex3lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor1 88 |
. . . . 5
| |
| 2 | 1 | ax-r1 35 |
. . . 4
|
| 3 | df-i1 44 |
. . . . 5
| |
| 4 | 3 | ax-r4 37 |
. . . 4
|
| 5 | id 59 |
. . . 4
| |
| 6 | 2, 4, 5 | 3tr1 63 |
. . 3
|
| 7 | 6 | ax-r5 38 |
. 2
|
| 8 | coman1 185 |
. . 3
| |
| 9 | comid 187 |
. . . 4
| |
| 10 | 9 | comcom2 183 |
. . 3
|
| 11 | 8, 10 | fh3r 475 |
. 2
|
| 12 | orabs 120 |
. . . 4
| |
| 13 | ax-a2 31 |
. . . . 5
| |
| 14 | df-t 41 |
. . . . . 6
| |
| 15 | 14 | ax-r1 35 |
. . . . 5
|
| 16 | 13, 15 | ax-r2 36 |
. . . 4
|
| 17 | 12, 16 | 2an 79 |
. . 3
|
| 18 | an1 106 |
. . 3
| |
| 19 | 17, 18 | ax-r2 36 |
. 2
|
| 20 | 7, 11, 19 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: gomaex3lem7 920 |
| Copyright terms: Public domain | W3C validator |