![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > gomaex3lem2 | Unicode version |
Description: Lemma for Godowski 6-var -> Mayet Example 3. |
Ref | Expression |
---|---|
gomaex3lem2.5 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
gomaex3lem2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gomaex3lem2.5 |
. . . . . 6
![]() ![]() ![]() ![]() | |
2 | 1 | lecon3 157 |
. . . . 5
![]() ![]() ![]() ![]() |
3 | 2 | lecom 180 |
. . . 4
![]() ![]() ![]() ![]() |
4 | comid 187 |
. . . . 5
![]() ![]() ![]() | |
5 | 4 | comcom2 183 |
. . . 4
![]() ![]() ![]() ![]() |
6 | 3, 5 | fh3r 475 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | anor3 90 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | ax-r5 38 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | ax-r1 35 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | anabs 121 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 10 | df2le1 135 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | leid 148 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
13 | 12, 2 | lel2or 170 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | lebi 145 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | df-t 41 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | ax-a2 31 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 15, 16 | ax-r2 36 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 14, 17 | 2an 79 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 6, 9, 18 | 3tr1 63 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | an1 106 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 19, 20 | ax-r2 36 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: gomaex3lem7 920 |
Copyright terms: Public domain | W3C validator |