| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gsth | Unicode version | ||
| Description: Gudder-Schelp's Theorem. Beran, p. 262, Th. 4.1. |
| Ref | Expression |
|---|---|
| gsth.1 |
|
| gsth.2 |
|
| gsth.3 |
|
| Ref | Expression |
|---|---|
| gsth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsth.2 |
. . . . . 6
| |
| 2 | gsth.1 |
. . . . . . 7
| |
| 3 | 2 | comcom 453 |
. . . . . 6
|
| 4 | 1, 3 | fh4rc 482 |
. . . . 5
|
| 5 | 1 | comcom2 183 |
. . . . . 6
|
| 6 | 5, 3 | fh4rc 482 |
. . . . 5
|
| 7 | 4, 6 | 2an 79 |
. . . 4
|
| 8 | an4 86 |
. . . 4
| |
| 9 | an32 83 |
. . . . 5
| |
| 10 | 1 | comd 456 |
. . . . . 6
|
| 11 | 10 | lan 77 |
. . . . 5
|
| 12 | 3, 1 | fh1r 473 |
. . . . . . 7
|
| 13 | 12 | ran 78 |
. . . . . 6
|
| 14 | lea 160 |
. . . . . . . . . 10
| |
| 15 | leo 158 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | letr 137 |
. . . . . . . . 9
|
| 17 | 16 | lecom 180 |
. . . . . . . 8
|
| 18 | 17 | comcom 453 |
. . . . . . 7
|
| 19 | gsth.3 |
. . . . . . . . . . 11
| |
| 20 | 19 | comcom 453 |
. . . . . . . . . 10
|
| 21 | coman2 186 |
. . . . . . . . . . 11
| |
| 22 | 21 | comcom2 183 |
. . . . . . . . . 10
|
| 23 | 20, 22 | com2or 483 |
. . . . . . . . 9
|
| 24 | 23 | comcom 453 |
. . . . . . . 8
|
| 25 | ancom 74 |
. . . . . . . 8
| |
| 26 | 24, 25 | cbtr 182 |
. . . . . . 7
|
| 27 | 18, 26 | fh1r 473 |
. . . . . 6
|
| 28 | 16 | df2le2 136 |
. . . . . . . 8
|
| 29 | ancom 74 |
. . . . . . . . . 10
| |
| 30 | 29 | ran 78 |
. . . . . . . . 9
|
| 31 | 20, 22 | fh1 469 |
. . . . . . . . 9
|
| 32 | anass 76 |
. . . . . . . . . . . 12
| |
| 33 | dff 101 |
. . . . . . . . . . . . . 14
| |
| 34 | 33 | ax-r1 35 |
. . . . . . . . . . . . 13
|
| 35 | 34 | lan 77 |
. . . . . . . . . . . 12
|
| 36 | an0 108 |
. . . . . . . . . . . 12
| |
| 37 | 32, 35, 36 | 3tr 65 |
. . . . . . . . . . 11
|
| 38 | 37 | lor 70 |
. . . . . . . . . 10
|
| 39 | or0 102 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | ax-r2 36 |
. . . . . . . . 9
|
| 41 | 30, 31, 40 | 3tr 65 |
. . . . . . . 8
|
| 42 | 28, 41 | 2or 72 |
. . . . . . 7
|
| 43 | ax-a2 31 |
. . . . . . 7
| |
| 44 | ancom 74 |
. . . . . . . . 9
| |
| 45 | lea 160 |
. . . . . . . . . 10
| |
| 46 | 45 | lelan 167 |
. . . . . . . . 9
|
| 47 | 44, 46 | bltr 138 |
. . . . . . . 8
|
| 48 | 47 | df-le2 131 |
. . . . . . 7
|
| 49 | 42, 43, 48 | 3tr 65 |
. . . . . 6
|
| 50 | 13, 27, 49 | 3tr 65 |
. . . . 5
|
| 51 | 9, 11, 50 | 3tr2 64 |
. . . 4
|
| 52 | 7, 8, 51 | 3tr 65 |
. . 3
|
| 53 | 52 | ax-r1 35 |
. 2
|
| 54 | 53 | df2c1 468 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: gsth2 490 |
| Copyright terms: Public domain | W3C validator |