| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oml6 | Unicode version | ||
| Description: Orthomodular law. |
| Ref | Expression |
|---|---|
| oml6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comor1 461 |
. . . 4
| |
| 2 | 1 | comcom7 460 |
. . 3
|
| 3 | comor2 462 |
. . . 4
| |
| 4 | 3 | comcom7 460 |
. . 3
|
| 5 | 2, 4 | fh4c 478 |
. 2
|
| 6 | df-t 41 |
. . . . . 6
| |
| 7 | 6 | ax-r5 38 |
. . . . 5
|
| 8 | ax-a2 31 |
. . . . . 6
| |
| 9 | or1 104 |
. . . . . 6
| |
| 10 | 8, 9 | ax-r2 36 |
. . . . 5
|
| 11 | ax-a3 32 |
. . . . 5
| |
| 12 | 7, 10, 11 | 3tr2 64 |
. . . 4
|
| 13 | 12 | ax-r1 35 |
. . 3
|
| 14 | 13 | lan 77 |
. 2
|
| 15 | an1 106 |
. 2
| |
| 16 | 5, 14, 15 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: sa5 836 |
| Copyright terms: Public domain | W3C validator |