| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > i1i2 | Unicode version | ||
| Description: Correspondence between Sasaki and Dishkant conditionals. |
| Ref | Expression |
|---|---|
| i1i2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a1 30 |
. . . . 5
| |
| 2 | ax-a1 30 |
. . . . 5
| |
| 3 | 1, 2 | 2an 79 |
. . . 4
|
| 4 | ancom 74 |
. . . 4
| |
| 5 | 3, 4 | ax-r2 36 |
. . 3
|
| 6 | 5 | lor 70 |
. 2
|
| 7 | df-i1 44 |
. 2
| |
| 8 | df-i2 45 |
. 2
| |
| 9 | 6, 7, 8 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 |
| This theorem is referenced by: i2i1 267 i1i2con1 268 i1i2con2 269 nom41 326 1oai1 821 2oath1i1 827 oal1 1000 |
| Copyright terms: Public domain | W3C validator |