| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > i3abs3 | Unicode version | ||
| Description: Antecedent absorption. |
| Ref | Expression |
|---|---|
| i3abs3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-t 41 |
. . . . . . . 8
| |
| 2 | 1 | lan 77 |
. . . . . . 7
|
| 3 | an1 106 |
. . . . . . 7
| |
| 4 | comi31 508 |
. . . . . . . . . 10
| |
| 5 | 4 | comcom 453 |
. . . . . . . . 9
|
| 6 | 5 | comcom3 454 |
. . . . . . . 8
|
| 7 | 5 | comcom4 455 |
. . . . . . . 8
|
| 8 | 6, 7 | fh1 469 |
. . . . . . 7
|
| 9 | 2, 3, 8 | 3tr2 64 |
. . . . . 6
|
| 10 | 9 | ax-r1 35 |
. . . . 5
|
| 11 | comid 187 |
. . . . . . . 8
| |
| 12 | 11 | comcom2 183 |
. . . . . . 7
|
| 13 | 12, 5 | fh1 469 |
. . . . . 6
|
| 14 | ax-a2 31 |
. . . . . . 7
| |
| 15 | dff 101 |
. . . . . . . 8
| |
| 16 | 15 | ax-r5 38 |
. . . . . . 7
|
| 17 | or0 102 |
. . . . . . 7
| |
| 18 | 14, 16, 17 | 3tr2 64 |
. . . . . 6
|
| 19 | 13, 18 | ax-r2 36 |
. . . . 5
|
| 20 | 10, 19 | 2or 72 |
. . . 4
|
| 21 | 12, 5 | fh4 472 |
. . . . 5
|
| 22 | ax-a2 31 |
. . . . . . . . 9
| |
| 23 | df-t 41 |
. . . . . . . . . 10
| |
| 24 | 23 | ax-r1 35 |
. . . . . . . . 9
|
| 25 | 22, 24 | ax-r2 36 |
. . . . . . . 8
|
| 26 | 25 | ran 78 |
. . . . . . 7
|
| 27 | ancom 74 |
. . . . . . 7
| |
| 28 | 26, 27 | ax-r2 36 |
. . . . . 6
|
| 29 | an1 106 |
. . . . . 6
| |
| 30 | 28, 29 | ax-r2 36 |
. . . . 5
|
| 31 | 21, 30 | ax-r2 36 |
. . . 4
|
| 32 | 20, 31 | ax-r2 36 |
. . 3
|
| 33 | 32 | ax-r1 35 |
. 2
|
| 34 | lem4 511 |
. 2
| |
| 35 | df-i3 46 |
. 2
| |
| 36 | 33, 34, 35 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: i3th7 549 i3th8 550 |
| Copyright terms: Public domain | W3C validator |