QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  id5id0 Unicode version

Theorem id5id0 352
Description: Show that classical identity follows from quantum identity in OL.
Hypothesis
Ref Expression
id5id0.1 (a == b) = 1
Assertion
Ref Expression
id5id0 (a ==0 b) = 1

Proof of Theorem id5id0
StepHypRef Expression
1 id5id0.1 . 2 (a == b) = 1
2 id5leid0 351 . . 3 (a == b) =< (a ==0 b)
32sklem 230 . 2 ((a == b)' v (a ==0 b)) = 1
41, 3skr0 242 1 (a ==0 b) = 1
Colors of variables: term
Syntax hints:   = wb 1   == tb 5  1wt 8   ==0 wid0 17
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-id0 49  df-le1 130  df-le2 131
This theorem is referenced by:  wdka4o  1114  wddi-0  1115
  Copyright terms: Public domain W3C validator