| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > lem4.6.6i4j0 | Unicode version | ||
| Description: Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 4, and j is set to 0. (Contributed by Roy F. Longton, 3-Jul-05.) |
| Ref | Expression |
|---|---|
| lem4.6.6i4j0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leao4 165 |
. . . . 5
| |
| 2 | leao1 162 |
. . . . 5
| |
| 3 | 1, 2 | lel2or 170 |
. . . 4
|
| 4 | lea 160 |
. . . 4
| |
| 5 | 3, 4 | lel2or 170 |
. . 3
|
| 6 | 5 | df-le2 131 |
. 2
|
| 7 | df-i4 47 |
. . 3
| |
| 8 | df-i0 43 |
. . 3
| |
| 9 | 7, 8 | 2or 72 |
. 2
|
| 10 | 6, 9, 8 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i4 47 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |