| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > marsdenlem2 | Unicode version | ||
| Description: Lemma for Marsden-Herman distributive law. |
| Ref | Expression |
|---|---|
| marsden.1 |
|
| marsden.2 |
|
| marsden.3 |
|
| marsden.4 |
|
| Ref | Expression |
|---|---|
| marsdenlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 |
. 2
| |
| 2 | comorr 184 |
. . . 4
| |
| 3 | 2 | comcom3 454 |
. . 3
|
| 4 | marsden.2 |
. . . . 5
| |
| 5 | 4 | comcom4 455 |
. . . 4
|
| 6 | 5 | comcom 453 |
. . 3
|
| 7 | 3, 6 | fh2rc 480 |
. 2
|
| 8 | 6 | comcom6 459 |
. . . . 5
|
| 9 | marsden.3 |
. . . . 5
| |
| 10 | 8, 9 | fh2 470 |
. . . 4
|
| 11 | comid 187 |
. . . . . . 7
| |
| 12 | 11 | comcom2 183 |
. . . . . 6
|
| 13 | 12, 9 | fh2 470 |
. . . . 5
|
| 14 | dff 101 |
. . . . . . . 8
| |
| 15 | ancom 74 |
. . . . . . . 8
| |
| 16 | 14, 15 | ax-r2 36 |
. . . . . . 7
|
| 17 | 16 | ax-r5 38 |
. . . . . 6
|
| 18 | 17 | ax-r1 35 |
. . . . 5
|
| 19 | or0r 103 |
. . . . 5
| |
| 20 | 13, 18, 19 | 3tr 65 |
. . . 4
|
| 21 | 10, 20 | 2or 72 |
. . 3
|
| 22 | or32 82 |
. . 3
| |
| 23 | 21, 22 | ax-r2 36 |
. 2
|
| 24 | 1, 7, 23 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |