![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > marsdenlem1 | Unicode version |
Description: Lemma for Marsden-Herman distributive law. |
Ref | Expression |
---|---|
marsden.1 |
![]() ![]() ![]() |
marsden.2 |
![]() ![]() ![]() |
marsden.3 |
![]() ![]() ![]() |
marsden.4 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
marsdenlem1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | comorr 184 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | comcom3 454 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | marsden.4 |
. . . . 5
![]() ![]() ![]() | |
5 | 4 | comcom4 455 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
6 | 5 | comcom 453 |
. . 3
![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | fh2r 474 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | ax-r2 36 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |