| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mhcor1 | Unicode version | ||
| Description: Corollary of Marsden-Herman Lemma. |
| Ref | Expression |
|---|---|
| mhcor1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 76 |
. . 3
| |
| 2 | imp3 841 |
. . . 4
| |
| 3 | ancom 74 |
. . . . 5
| |
| 4 | imp3 841 |
. . . . 5
| |
| 5 | 3, 4 | ax-r2 36 |
. . . 4
|
| 6 | 2, 5 | 2an 79 |
. . 3
|
| 7 | leao3 164 |
. . . . . . . . 9
| |
| 8 | oran 87 |
. . . . . . . . 9
| |
| 9 | 7, 8 | lbtr 139 |
. . . . . . . 8
|
| 10 | 9 | lecom 180 |
. . . . . . 7
|
| 11 | 10 | comcom7 460 |
. . . . . 6
|
| 12 | 11 | comcom 453 |
. . . . 5
|
| 13 | leao2 163 |
. . . . . . . 8
| |
| 14 | oran 87 |
. . . . . . . 8
| |
| 15 | 13, 14 | lbtr 139 |
. . . . . . 7
|
| 16 | 15 | lecom 180 |
. . . . . 6
|
| 17 | 16 | comcom7 460 |
. . . . 5
|
| 18 | leao3 164 |
. . . . . . . . 9
| |
| 19 | 18, 14 | lbtr 139 |
. . . . . . . 8
|
| 20 | 19 | lecom 180 |
. . . . . . 7
|
| 21 | 20 | comcom7 460 |
. . . . . 6
|
| 22 | 21 | comcom 453 |
. . . . 5
|
| 23 | leao2 163 |
. . . . . . . 8
| |
| 24 | 23, 8 | lbtr 139 |
. . . . . . 7
|
| 25 | 24 | lecom 180 |
. . . . . 6
|
| 26 | 25 | comcom7 460 |
. . . . 5
|
| 27 | 12, 17, 22, 26 | mh2 884 |
. . . 4
|
| 28 | ancom 74 |
. . . . . . . 8
| |
| 29 | ancom 74 |
. . . . . . . . . 10
| |
| 30 | 29 | ran 78 |
. . . . . . . . 9
|
| 31 | an4 86 |
. . . . . . . . 9
| |
| 32 | ancom 74 |
. . . . . . . . . 10
| |
| 33 | 32 | lan 77 |
. . . . . . . . 9
|
| 34 | 30, 31, 33 | 3tr 65 |
. . . . . . . 8
|
| 35 | anass 76 |
. . . . . . . 8
| |
| 36 | 28, 34, 35 | 3tr1 63 |
. . . . . . 7
|
| 37 | ancom 74 |
. . . . . . . 8
| |
| 38 | anass 76 |
. . . . . . . 8
| |
| 39 | dff 101 |
. . . . . . . . . . . . 13
| |
| 40 | 39 | ran 78 |
. . . . . . . . . . . 12
|
| 41 | 40 | ax-r1 35 |
. . . . . . . . . . 11
|
| 42 | anass 76 |
. . . . . . . . . . 11
| |
| 43 | an0r 109 |
. . . . . . . . . . 11
| |
| 44 | 41, 42, 43 | 3tr2 64 |
. . . . . . . . . 10
|
| 45 | 44 | lan 77 |
. . . . . . . . 9
|
| 46 | an0 108 |
. . . . . . . . 9
| |
| 47 | 45, 46 | ax-r2 36 |
. . . . . . . 8
|
| 48 | 37, 38, 47 | 3tr 65 |
. . . . . . 7
|
| 49 | 36, 48 | 2or 72 |
. . . . . 6
|
| 50 | or0 102 |
. . . . . 6
| |
| 51 | 49, 50 | ax-r2 36 |
. . . . 5
|
| 52 | anass 76 |
. . . . . . . 8
| |
| 53 | anass 76 |
. . . . . . . . . . 11
| |
| 54 | 53 | ax-r1 35 |
. . . . . . . . . 10
|
| 55 | an0r 109 |
. . . . . . . . . . . . 13
| |
| 56 | 55 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 57 | dff 101 |
. . . . . . . . . . . . 13
| |
| 58 | 57 | ran 78 |
. . . . . . . . . . . 12
|
| 59 | 56, 58 | ax-r2 36 |
. . . . . . . . . . 11
|
| 60 | 59 | ax-r1 35 |
. . . . . . . . . 10
|
| 61 | 54, 60 | ax-r2 36 |
. . . . . . . . 9
|
| 62 | 61 | lan 77 |
. . . . . . . 8
|
| 63 | an0 108 |
. . . . . . . 8
| |
| 64 | 52, 62, 63 | 3tr 65 |
. . . . . . 7
|
| 65 | ancom 74 |
. . . . . . . 8
| |
| 66 | anass 76 |
. . . . . . . . 9
| |
| 67 | 66 | ax-r1 35 |
. . . . . . . 8
|
| 68 | 65, 67 | ax-r2 36 |
. . . . . . 7
|
| 69 | 64, 68 | 2or 72 |
. . . . . 6
|
| 70 | or0r 103 |
. . . . . 6
| |
| 71 | 69, 70 | ax-r2 36 |
. . . . 5
|
| 72 | 51, 71 | 2or 72 |
. . . 4
|
| 73 | ax-a2 31 |
. . . 4
| |
| 74 | 27, 72, 73 | 3tr 65 |
. . 3
|
| 75 | 1, 6, 74 | 3tr 65 |
. 2
|
| 76 | anass 76 |
. . . 4
| |
| 77 | ancom 74 |
. . . 4
| |
| 78 | 76, 77 | ax-r2 36 |
. . 3
|
| 79 | 78 | ran 78 |
. 2
|
| 80 | bi4 840 |
. 2
| |
| 81 | 75, 79, 80 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oago3.29 889 oago3.21x 890 |
| Copyright terms: Public domain | W3C validator |