| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > bi4 | Unicode version | ||
| Description: Chained biconditional. |
| Ref | Expression |
|---|---|
| bi4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3 839 |
. . 3
| |
| 2 | u12lembi 726 |
. . . 4
| |
| 3 | 2 | ax-r1 35 |
. . 3
|
| 4 | 1, 3 | 2an 79 |
. 2
|
| 5 | df-i1 44 |
. . . . . 6
| |
| 6 | 5 | lan 77 |
. . . . 5
|
| 7 | leao2 163 |
. . . . . . 7
| |
| 8 | 7 | lecom 180 |
. . . . . 6
|
| 9 | leao4 165 |
. . . . . . . . . 10
| |
| 10 | oran2 92 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | lbtr 139 |
. . . . . . . . 9
|
| 12 | 11 | lecom 180 |
. . . . . . . 8
|
| 13 | 12 | comcom 453 |
. . . . . . 7
|
| 14 | 13 | comcom6 459 |
. . . . . 6
|
| 15 | 8, 14 | fh2rc 480 |
. . . . 5
|
| 16 | comanr2 465 |
. . . . . . . . 9
| |
| 17 | 16 | comcom3 454 |
. . . . . . . 8
|
| 18 | comanr1 464 |
. . . . . . . . 9
| |
| 19 | 18 | comcom3 454 |
. . . . . . . 8
|
| 20 | 17, 19 | fh2 470 |
. . . . . . 7
|
| 21 | anass 76 |
. . . . . . . . 9
| |
| 22 | dff 101 |
. . . . . . . . . . 11
| |
| 23 | 22 | lan 77 |
. . . . . . . . . 10
|
| 24 | 23 | ax-r1 35 |
. . . . . . . . 9
|
| 25 | an0 108 |
. . . . . . . . 9
| |
| 26 | 21, 24, 25 | 3tr 65 |
. . . . . . . 8
|
| 27 | anass 76 |
. . . . . . . . . 10
| |
| 28 | 27 | ax-r1 35 |
. . . . . . . . 9
|
| 29 | anass 76 |
. . . . . . . . . . 11
| |
| 30 | anidm 111 |
. . . . . . . . . . . 12
| |
| 31 | 30 | lan 77 |
. . . . . . . . . . 11
|
| 32 | 29, 31 | ax-r2 36 |
. . . . . . . . . 10
|
| 33 | 32 | ran 78 |
. . . . . . . . 9
|
| 34 | 28, 33 | ax-r2 36 |
. . . . . . . 8
|
| 35 | 26, 34 | 2or 72 |
. . . . . . 7
|
| 36 | or0r 103 |
. . . . . . 7
| |
| 37 | 20, 35, 36 | 3tr 65 |
. . . . . 6
|
| 38 | comanr2 465 |
. . . . . . . 8
| |
| 39 | 38, 19 | fh2 470 |
. . . . . . 7
|
| 40 | anass 76 |
. . . . . . . . 9
| |
| 41 | anidm 111 |
. . . . . . . . . 10
| |
| 42 | 41 | lan 77 |
. . . . . . . . 9
|
| 43 | 40, 42 | ax-r2 36 |
. . . . . . . 8
|
| 44 | an4 86 |
. . . . . . . . 9
| |
| 45 | anass 76 |
. . . . . . . . 9
| |
| 46 | 22 | ran 78 |
. . . . . . . . . . . . 13
|
| 47 | 46 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 48 | anass 76 |
. . . . . . . . . . . 12
| |
| 49 | an0r 109 |
. . . . . . . . . . . 12
| |
| 50 | 47, 48, 49 | 3tr2 64 |
. . . . . . . . . . 11
|
| 51 | 50 | lan 77 |
. . . . . . . . . 10
|
| 52 | an0 108 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | ax-r2 36 |
. . . . . . . . 9
|
| 54 | 44, 45, 53 | 3tr 65 |
. . . . . . . 8
|
| 55 | 43, 54 | 2or 72 |
. . . . . . 7
|
| 56 | or0 102 |
. . . . . . 7
| |
| 57 | 39, 55, 56 | 3tr 65 |
. . . . . 6
|
| 58 | 37, 57 | 2or 72 |
. . . . 5
|
| 59 | 6, 15, 58 | 3tr 65 |
. . . 4
|
| 60 | 59 | ran 78 |
. . 3
|
| 61 | anass 76 |
. . 3
| |
| 62 | anass 76 |
. . . . . . . 8
| |
| 63 | an4 86 |
. . . . . . . 8
| |
| 64 | ancom 74 |
. . . . . . . . . . 11
| |
| 65 | u2lemab 611 |
. . . . . . . . . . 11
| |
| 66 | 64, 65 | ax-r2 36 |
. . . . . . . . . 10
|
| 67 | 66 | lan 77 |
. . . . . . . . 9
|
| 68 | an32 83 |
. . . . . . . . 9
| |
| 69 | 67, 68 | ax-r2 36 |
. . . . . . . 8
|
| 70 | 62, 63, 69 | 3tr 65 |
. . . . . . 7
|
| 71 | 70 | df2le1 135 |
. . . . . 6
|
| 72 | 71 | lecom 180 |
. . . . 5
|
| 73 | an32 83 |
. . . . . . . . 9
| |
| 74 | leao4 165 |
. . . . . . . . 9
| |
| 75 | 73, 74 | bltr 138 |
. . . . . . . 8
|
| 76 | 75, 10 | lbtr 139 |
. . . . . . 7
|
| 77 | 76 | lecom 180 |
. . . . . 6
|
| 78 | 77 | comcom7 460 |
. . . . 5
|
| 79 | 72, 78 | fh2r 474 |
. . . 4
|
| 80 | anass 76 |
. . . . . 6
| |
| 81 | ancom 74 |
. . . . . . . 8
| |
| 82 | u2lemanb 616 |
. . . . . . . 8
| |
| 83 | 81, 82 | ax-r2 36 |
. . . . . . 7
|
| 84 | 83 | lan 77 |
. . . . . 6
|
| 85 | an12 81 |
. . . . . . 7
| |
| 86 | ancom 74 |
. . . . . . 7
| |
| 87 | 85, 86 | ax-r2 36 |
. . . . . 6
|
| 88 | 80, 84, 87 | 3tr 65 |
. . . . 5
|
| 89 | 70, 88 | 2or 72 |
. . . 4
|
| 90 | 79, 89 | ax-r2 36 |
. . 3
|
| 91 | 60, 61, 90 | 3tr2 64 |
. 2
|
| 92 | 4, 91 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: mhcor1 888 |
| Copyright terms: Public domain | W3C validator |