| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mhlem1 | Unicode version | ||
| Description: Lemma for Marsden-Herman distributive law. |
| Ref | Expression |
|---|---|
| mhlem1.1 |
|
| mhlem1.2 |
|
| Ref | Expression |
|---|---|
| mhlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-t 41 |
. . . . 5
| |
| 2 | 1 | lan 77 |
. . . 4
|
| 3 | an1 106 |
. . . 4
| |
| 4 | comor2 462 |
. . . . . 6
| |
| 5 | 4 | comcom2 183 |
. . . . . 6
|
| 6 | 4, 5 | fh1 469 |
. . . . 5
|
| 7 | ax-a2 31 |
. . . . 5
| |
| 8 | mhlem1.1 |
. . . . . . . . . 10
| |
| 9 | 8 | comcom2 183 |
. . . . . . . . 9
|
| 10 | 9 | comcom 453 |
. . . . . . . 8
|
| 11 | comid 187 |
. . . . . . . . 9
| |
| 12 | 11 | comcom3 454 |
. . . . . . . 8
|
| 13 | 10, 12 | fh1r 473 |
. . . . . . 7
|
| 14 | dff 101 |
. . . . . . . . 9
| |
| 15 | 14 | lor 70 |
. . . . . . . 8
|
| 16 | 15 | ax-r1 35 |
. . . . . . 7
|
| 17 | or0 102 |
. . . . . . 7
| |
| 18 | 13, 16, 17 | 3tr 65 |
. . . . . 6
|
| 19 | ancom 74 |
. . . . . . 7
| |
| 20 | ax-a2 31 |
. . . . . . . 8
| |
| 21 | 20 | lan 77 |
. . . . . . 7
|
| 22 | anabs 121 |
. . . . . . 7
| |
| 23 | 19, 21, 22 | 3tr 65 |
. . . . . 6
|
| 24 | 18, 23 | 2or 72 |
. . . . 5
|
| 25 | 6, 7, 24 | 3tr 65 |
. . . 4
|
| 26 | 2, 3, 25 | 3tr2 64 |
. . 3
|
| 27 | 26 | ran 78 |
. 2
|
| 28 | comorr 184 |
. . . . 5
| |
| 29 | 28 | comcom6 459 |
. . . 4
|
| 30 | comanr2 465 |
. . . . 5
| |
| 31 | 30 | comcom6 459 |
. . . 4
|
| 32 | 29, 31 | fh2rc 480 |
. . 3
|
| 33 | leao2 163 |
. . . . 5
| |
| 34 | 33 | df2le2 136 |
. . . 4
|
| 35 | 34 | ax-r5 38 |
. . 3
|
| 36 | 32, 35 | ax-r2 36 |
. 2
|
| 37 | 11 | comcom2 183 |
. . . . 5
|
| 38 | mhlem1.2 |
. . . . . 6
| |
| 39 | 38 | comcom 453 |
. . . . 5
|
| 40 | 37, 39 | fh1 469 |
. . . 4
|
| 41 | 14 | ax-r5 38 |
. . . . 5
|
| 42 | 41 | ax-r1 35 |
. . . 4
|
| 43 | or0r 103 |
. . . 4
| |
| 44 | 40, 42, 43 | 3tr 65 |
. . 3
|
| 45 | 44 | lor 70 |
. 2
|
| 46 | 27, 36, 45 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: mhlem2 878 |
| Copyright terms: Public domain | W3C validator |