| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mhlem2 | Unicode version | ||
| Description: Lemma for Marsden-Herman distributive law. |
| Ref | Expression |
|---|---|
| mh.1 |
|
| mh.2 |
|
| mh.3 |
|
| mh.4 |
|
| Ref | Expression |
|---|---|
| mhlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mh.1 |
. . . 4
| |
| 2 | mh.3 |
. . . . 5
| |
| 3 | 2 | comcom3 454 |
. . . 4
|
| 4 | 1, 3 | mhlem1 877 |
. . 3
|
| 5 | ax-a2 31 |
. . . . 5
| |
| 6 | 5 | lan 77 |
. . . 4
|
| 7 | mh.4 |
. . . . 5
| |
| 8 | mh.2 |
. . . . . 6
| |
| 9 | 8 | comcom3 454 |
. . . . 5
|
| 10 | 7, 9 | mhlem1 877 |
. . . 4
|
| 11 | 6, 10 | ax-r2 36 |
. . 3
|
| 12 | 4, 11 | 2an 79 |
. 2
|
| 13 | leao2 163 |
. . . . . 6
| |
| 14 | leao3 164 |
. . . . . 6
| |
| 15 | 13, 14 | ler2an 173 |
. . . . 5
|
| 16 | leao3 164 |
. . . . . 6
| |
| 17 | leao2 163 |
. . . . . 6
| |
| 18 | 16, 17 | ler2an 173 |
. . . . 5
|
| 19 | 15, 18 | lel2or 170 |
. . . 4
|
| 20 | oran2 92 |
. . . . . 6
| |
| 21 | oran2 92 |
. . . . . 6
| |
| 22 | 20, 21 | 2an 79 |
. . . . 5
|
| 23 | anor3 90 |
. . . . 5
| |
| 24 | 22, 23 | ax-r2 36 |
. . . 4
|
| 25 | 19, 24 | lbtr 139 |
. . 3
|
| 26 | 25 | mhlem 876 |
. 2
|
| 27 | 12, 26 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: mh 879 |
| Copyright terms: Public domain | W3C validator |