| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mlaconj | Unicode version | ||
| Description: For 5GO proof of Mladen's conjecture. |
| Ref | Expression |
|---|---|
| mlaconj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbile 843 |
. . 3
| |
| 2 | 1 | lelan 167 |
. 2
|
| 3 | ancom 74 |
. . . . . 6
| |
| 4 | id 59 |
. . . . . . . . 9
| |
| 5 | 4 | ran 78 |
. . . . . . . 8
|
| 6 | anass 76 |
. . . . . . . 8
| |
| 7 | 5, 6 | ax-r2 36 |
. . . . . . 7
|
| 8 | 7 | ran 78 |
. . . . . 6
|
| 9 | anass 76 |
. . . . . 6
| |
| 10 | 3, 8, 9 | 3tr 65 |
. . . . 5
|
| 11 | 10 | lan 77 |
. . . 4
|
| 12 | anass 76 |
. . . 4
| |
| 13 | anass 76 |
. . . 4
| |
| 14 | 11, 12, 13 | 3tr1 63 |
. . 3
|
| 15 | bi1o1a 798 |
. . . 4
| |
| 16 | i2i1i1 800 |
. . . . 5
| |
| 17 | 16 | ran 78 |
. . . 4
|
| 18 | 15, 17 | 2an 79 |
. . 3
|
| 19 | anass 76 |
. . 3
| |
| 20 | 14, 18, 19 | 3tr1 63 |
. 2
|
| 21 | 2, 20 | lbtr 139 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: mlaconj2 846 |
| Copyright terms: Public domain | W3C validator |