| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mlaconjolem | Unicode version | ||
| Description: Lemma for OML proof of Mladen's conjecture, |
| Ref | Expression |
|---|---|
| mlaconjolem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbile 843 |
. 2
| |
| 2 | df-i2 45 |
. . . . 5
| |
| 3 | oran3 93 |
. . . . . . . 8
| |
| 4 | 3 | ran 78 |
. . . . . . 7
|
| 5 | 4 | lor 70 |
. . . . . 6
|
| 6 | 5 | ax-r1 35 |
. . . . 5
|
| 7 | 2, 6 | ax-r2 36 |
. . . 4
|
| 8 | df-i1 44 |
. . . 4
| |
| 9 | 7, 8 | 2an 79 |
. . 3
|
| 10 | comor1 461 |
. . . . 5
| |
| 11 | 10 | comcom2 183 |
. . . 4
|
| 12 | leao1 162 |
. . . . . 6
| |
| 13 | 12 | lecom 180 |
. . . . 5
|
| 14 | 13 | comcom 453 |
. . . 4
|
| 15 | 11, 14 | fh1 469 |
. . 3
|
| 16 | ancom 74 |
. . . . . . . 8
| |
| 17 | 16 | lor 70 |
. . . . . . 7
|
| 18 | 17 | ran 78 |
. . . . . 6
|
| 19 | ancom 74 |
. . . . . 6
| |
| 20 | omlan 448 |
. . . . . 6
| |
| 21 | 18, 19, 20 | 3tr 65 |
. . . . 5
|
| 22 | ancom 74 |
. . . . . 6
| |
| 23 | 12 | df2le2 136 |
. . . . . 6
|
| 24 | 22, 23 | ax-r2 36 |
. . . . 5
|
| 25 | 21, 24 | 2or 72 |
. . . 4
|
| 26 | ax-a2 31 |
. . . 4
| |
| 27 | 25, 26 | ax-r2 36 |
. . 3
|
| 28 | 9, 15, 27 | 3tr 65 |
. 2
|
| 29 | 1, 28 | lbtr 139 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: mlaconjo 886 |
| Copyright terms: Public domain | W3C validator |