| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mlaconjo | Unicode version | ||
| Description: OML proof of Mladen's conjecture. |
| Ref | Expression |
|---|---|
| mlaconjo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfb 94 |
. . . 4
| |
| 2 | 1 | bile 142 |
. . 3
|
| 3 | mlaconjolem 885 |
. . 3
| |
| 4 | 2, 3 | le2an 169 |
. 2
|
| 5 | lea 160 |
. . . . 5
| |
| 6 | lea 160 |
. . . . 5
| |
| 7 | 5, 6 | le2an 169 |
. . . 4
|
| 8 | lea 160 |
. . . . 5
| |
| 9 | lea 160 |
. . . . 5
| |
| 10 | 8, 9 | le2an 169 |
. . . 4
|
| 11 | 7, 10 | le2or 168 |
. . 3
|
| 12 | leao1 162 |
. . . . . . . 8
| |
| 13 | oran 87 |
. . . . . . . 8
| |
| 14 | 12, 13 | lbtr 139 |
. . . . . . 7
|
| 15 | 14 | lecom 180 |
. . . . . 6
|
| 16 | 15 | comcom7 460 |
. . . . 5
|
| 17 | leor 159 |
. . . . . . . 8
| |
| 18 | df-a 40 |
. . . . . . . . . 10
| |
| 19 | 18 | lor 70 |
. . . . . . . . 9
|
| 20 | oran1 91 |
. . . . . . . . 9
| |
| 21 | 19, 20 | ax-r2 36 |
. . . . . . . 8
|
| 22 | 17, 21 | lbtr 139 |
. . . . . . 7
|
| 23 | 22 | lecom 180 |
. . . . . 6
|
| 24 | 23 | comcom7 460 |
. . . . 5
|
| 25 | lear 161 |
. . . . . . . 8
| |
| 26 | 25, 13 | lbtr 139 |
. . . . . . 7
|
| 27 | 26 | lecom 180 |
. . . . . 6
|
| 28 | 27 | comcom7 460 |
. . . . 5
|
| 29 | leao1 162 |
. . . . . . . 8
| |
| 30 | 29, 20 | lbtr 139 |
. . . . . . 7
|
| 31 | 30 | lecom 180 |
. . . . . 6
|
| 32 | 31 | comcom7 460 |
. . . . 5
|
| 33 | 16, 24, 28, 32 | mh 879 |
. . . 4
|
| 34 | an12 81 |
. . . . . . . 8
| |
| 35 | oran3 93 |
. . . . . . . . . . 11
| |
| 36 | 35 | lan 77 |
. . . . . . . . . 10
|
| 37 | dff 101 |
. . . . . . . . . . 11
| |
| 38 | 37 | ax-r1 35 |
. . . . . . . . . 10
|
| 39 | 36, 38 | ax-r2 36 |
. . . . . . . . 9
|
| 40 | 39 | lan 77 |
. . . . . . . 8
|
| 41 | an0 108 |
. . . . . . . 8
| |
| 42 | 34, 40, 41 | 3tr 65 |
. . . . . . 7
|
| 43 | 42 | lor 70 |
. . . . . 6
|
| 44 | or0 102 |
. . . . . 6
| |
| 45 | 43, 44 | ax-r2 36 |
. . . . 5
|
| 46 | an12 81 |
. . . . . . . 8
| |
| 47 | 13 | lan 77 |
. . . . . . . . . 10
|
| 48 | dff 101 |
. . . . . . . . . . 11
| |
| 49 | 48 | ax-r1 35 |
. . . . . . . . . 10
|
| 50 | 47, 49 | ax-r2 36 |
. . . . . . . . 9
|
| 51 | 50 | lan 77 |
. . . . . . . 8
|
| 52 | an0 108 |
. . . . . . . 8
| |
| 53 | 46, 51, 52 | 3tr 65 |
. . . . . . 7
|
| 54 | 53 | ax-r5 38 |
. . . . . 6
|
| 55 | or0r 103 |
. . . . . 6
| |
| 56 | 54, 55 | ax-r2 36 |
. . . . 5
|
| 57 | 45, 56 | 2or 72 |
. . . 4
|
| 58 | 33, 57 | ax-r2 36 |
. . 3
|
| 59 | dfb 94 |
. . 3
| |
| 60 | 11, 58, 59 | le3tr1 140 |
. 2
|
| 61 | 4, 60 | letr 137 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: distid 887 |
| Copyright terms: Public domain | W3C validator |