| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mloa | Unicode version | ||
| Description: Mladen's OA |
| Ref | Expression |
|---|---|
| mloa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lea 160 |
. . . 4
| |
| 2 | ax-a3 32 |
. . . . . 6
| |
| 3 | or12 80 |
. . . . . . 7
| |
| 4 | anor3 90 |
. . . . . . . 8
| |
| 5 | 4 | ax-r5 38 |
. . . . . . 7
|
| 6 | 3, 5 | ax-r2 36 |
. . . . . 6
|
| 7 | 2, 6 | ax-r2 36 |
. . . . 5
|
| 8 | leo 158 |
. . . . . . . . 9
| |
| 9 | df-i2 45 |
. . . . . . . . . 10
| |
| 10 | 9 | ax-r1 35 |
. . . . . . . . 9
|
| 11 | 8, 10 | lbtr 139 |
. . . . . . . 8
|
| 12 | leo 158 |
. . . . . . . . 9
| |
| 13 | df-i2 45 |
. . . . . . . . . 10
| |
| 14 | 13 | ax-r1 35 |
. . . . . . . . 9
|
| 15 | 12, 14 | lbtr 139 |
. . . . . . . 8
|
| 16 | 11, 15 | le2an 169 |
. . . . . . 7
|
| 17 | id 59 |
. . . . . . . 8
| |
| 18 | 17 | bile 142 |
. . . . . . 7
|
| 19 | 16, 18 | lel2or 170 |
. . . . . 6
|
| 20 | 19 | lelor 166 |
. . . . 5
|
| 21 | 7, 20 | bltr 138 |
. . . 4
|
| 22 | 1, 21 | le2an 169 |
. . 3
|
| 23 | oal2 999 |
. . 3
| |
| 24 | 22, 23 | letr 137 |
. 2
|
| 25 | u2lembi 721 |
. . 3
| |
| 26 | dfb 94 |
. . . . 5
| |
| 27 | 26 | ax-r1 35 |
. . . 4
|
| 28 | i2bi 722 |
. . . . 5
| |
| 29 | i2bi 722 |
. . . . 5
| |
| 30 | 28, 29 | 2an 79 |
. . . 4
|
| 31 | 27, 30 | 2or 72 |
. . 3
|
| 32 | 25, 31 | 2an 79 |
. 2
|
| 33 | 24, 32, 29 | le3tr2 141 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 ax-3oa 998 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |