| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u2lembi | Unicode version | ||
| Description: Dishkant implication and biconditional. |
| Ref | Expression |
|---|---|
| u2lembi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 |
. . 3
| |
| 2 | coman1 185 |
. . . . . 6
| |
| 3 | 2 | comcom7 460 |
. . . . 5
|
| 4 | coman2 186 |
. . . . . 6
| |
| 5 | 4 | comcom7 460 |
. . . . 5
|
| 6 | 3, 5 | fh3r 475 |
. . . 4
|
| 7 | 6 | ax-r1 35 |
. . 3
|
| 8 | 1, 7 | ax-r2 36 |
. 2
|
| 9 | df-i2 45 |
. . 3
| |
| 10 | df-i2 45 |
. . . 4
| |
| 11 | ancom 74 |
. . . . 5
| |
| 12 | 11 | lor 70 |
. . . 4
|
| 13 | 10, 12 | ax-r2 36 |
. . 3
|
| 14 | 9, 13 | 2an 79 |
. 2
|
| 15 | dfb 94 |
. 2
| |
| 16 | 8, 14, 15 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: i2bi 722 mloa 1018 |
| Copyright terms: Public domain | W3C validator |