![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > nbdi | Unicode version |
Description: Negated biconditional (distributive form) |
Ref | Expression |
---|---|
nbdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnb 95 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | comorr 184 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | comcom 453 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | comcom2 183 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | comorr 184 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | ax-a2 31 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | cbtr 182 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | comcom 453 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | comcom2 183 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 4, 9 | fh1 469 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | ax-r2 36 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |