| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > dfnb | Unicode version | ||
| Description: Negated biconditional. |
| Ref | Expression |
|---|---|
| dfnb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oran 87 |
. . . 4
| |
| 2 | 1 | con2 67 |
. . 3
|
| 3 | ancom 74 |
. . 3
| |
| 4 | 2, 3 | ax-r2 36 |
. 2
|
| 5 | dfb 94 |
. . 3
| |
| 6 | 5 | ax-r4 37 |
. 2
|
| 7 | oran 87 |
. . 3
| |
| 8 | df-a 40 |
. . . . 5
| |
| 9 | 8 | con2 67 |
. . . 4
|
| 10 | 9 | ax-r1 35 |
. . 3
|
| 11 | 7, 10 | 2an 79 |
. 2
|
| 12 | 4, 6, 11 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-b 39 df-a 40 |
| This theorem is referenced by: wnbdi 429 ska2 432 ska4 433 nbdi 486 test2 803 |
| Copyright terms: Public domain | W3C validator |