| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3-2to4 | Unicode version | ||
| Description: Derivation of 3-OA variant (4) from (2). |
| Ref | Expression |
|---|---|
| oa3-2to4.1 |
|
| Ref | Expression |
|---|---|
| oa3-2to4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa3-4lem 983 |
. . 3
| |
| 2 | 1 | ax-r1 35 |
. 2
|
| 3 | leid 148 |
. . 3
| |
| 4 | leid 148 |
. . 3
| |
| 5 | le1 146 |
. . 3
| |
| 6 | an1 106 |
. . . . . . 7
| |
| 7 | dff 101 |
. . . . . . . . . 10
| |
| 8 | dff 101 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | 2or 72 |
. . . . . . . . 9
|
| 10 | 9 | ax-r1 35 |
. . . . . . . 8
|
| 11 | or0 102 |
. . . . . . . 8
| |
| 12 | 10, 11 | ax-r2 36 |
. . . . . . 7
|
| 13 | 6, 12 | 2or 72 |
. . . . . 6
|
| 14 | or0 102 |
. . . . . 6
| |
| 15 | 13, 14 | ax-r2 36 |
. . . . 5
|
| 16 | 15 | ax-r1 35 |
. . . 4
|
| 17 | ax-a2 31 |
. . . 4
| |
| 18 | 16, 17 | ax-r2 36 |
. . 3
|
| 19 | oa3-2lemb 979 |
. . . 4
| |
| 20 | oa3-2to4.1 |
. . . 4
| |
| 21 | 19, 20 | bltr 138 |
. . 3
|
| 22 | 3, 4, 5, 18, 21 | oa4to6dual 964 |
. 2
|
| 23 | 2, 22 | bltr 138 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |