| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3-2lemb | Unicode version | ||
| Description: Lemma for 3-OA(2). Equivalence with substitution into 4-OA. |
| Ref | Expression |
|---|---|
| oa3-2lemb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a3 32 |
. . . . 5
| |
| 2 | i1id 275 |
. . . . . . . . . . . . 13
| |
| 3 | 2 | lan 77 |
. . . . . . . . . . . 12
|
| 4 | an1 106 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | ax-r2 36 |
. . . . . . . . . . 11
|
| 6 | 5 | lor 70 |
. . . . . . . . . 10
|
| 7 | or12 80 |
. . . . . . . . . . . 12
| |
| 8 | oridm 110 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | lor 70 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | ax-r2 36 |
. . . . . . . . . . 11
|
| 11 | df-i1 44 |
. . . . . . . . . . . 12
| |
| 12 | 11 | lor 70 |
. . . . . . . . . . 11
|
| 13 | 10, 12, 11 | 3tr1 63 |
. . . . . . . . . 10
|
| 14 | 6, 13 | ax-r2 36 |
. . . . . . . . 9
|
| 15 | 2 | lan 77 |
. . . . . . . . . . . 12
|
| 16 | an1 106 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . . . . 11
|
| 18 | 17 | lor 70 |
. . . . . . . . . 10
|
| 19 | or12 80 |
. . . . . . . . . . . 12
| |
| 20 | oridm 110 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | lor 70 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | ax-r2 36 |
. . . . . . . . . . 11
|
| 23 | df-i1 44 |
. . . . . . . . . . . 12
| |
| 24 | 23 | lor 70 |
. . . . . . . . . . 11
|
| 25 | 22, 24, 23 | 3tr1 63 |
. . . . . . . . . 10
|
| 26 | 18, 25 | ax-r2 36 |
. . . . . . . . 9
|
| 27 | 14, 26 | 2an 79 |
. . . . . . . 8
|
| 28 | 27 | lor 70 |
. . . . . . 7
|
| 29 | oridm 110 |
. . . . . . 7
| |
| 30 | 28, 29 | ax-r2 36 |
. . . . . 6
|
| 31 | 30 | lor 70 |
. . . . 5
|
| 32 | 1, 31 | ax-r2 36 |
. . . 4
|
| 33 | 32 | lan 77 |
. . 3
|
| 34 | 33 | lor 70 |
. 2
|
| 35 | 34 | lan 77 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 |
| This theorem is referenced by: oa3-2to4 988 |
| Copyright terms: Public domain | W3C validator |