QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  oa3moa3 Unicode version

Theorem oa3moa3 1029
Description: 4-variable 3OA to 5-variable Mayet's 3OA.
Hypotheses
Ref Expression
oa3moa3.1 a =< b'
oa3moa3.2 c =< d'
oa3moa3.3 d =< e'
oa3moa3.4 e =< c'
Assertion
Ref Expression
oa3moa3 ((a v b) ^ ((c v d) v e)) =< (a v (((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (e v ((b v e) ^ ((a v c) v d)))))

Proof of Theorem oa3moa3
StepHypRef Expression
1 oa3moa3.1 . . . . . 6 a =< b'
21lecon3 157 . . . . 5 b =< a'
3 oa3moa3.2 . . . . . . . 8 c =< d'
43lecon3 157 . . . . . . 7 d =< c'
5 oa3moa3.4 . . . . . . 7 e =< c'
64, 5lel2or 170 . . . . . 6 (d v e) =< c'
76lecon3 157 . . . . 5 c =< (d v e)'
82, 7ax-oal4 1026 . . . 4 ((b v a) ^ (c v (d v e))) =< (a v (b ^ (c v ((b v c) ^ (a v (d v e))))))
9 ax-a2 31 . . . . 5 (a v b) = (b v a)
10 ax-a3 32 . . . . 5 ((c v d) v e) = (c v (d v e))
119, 102an 79 . . . 4 ((a v b) ^ ((c v d) v e)) = ((b v a) ^ (c v (d v e)))
12 orass 75 . . . . . . . 8 ((a v d) v e) = (a v (d v e))
1312lan 77 . . . . . . 7 ((b v c) ^ ((a v d) v e)) = ((b v c) ^ (a v (d v e)))
1413lor 70 . . . . . 6 (c v ((b v c) ^ ((a v d) v e))) = (c v ((b v c) ^ (a v (d v e))))
1514lan 77 . . . . 5 (b ^ (c v ((b v c) ^ ((a v d) v e)))) = (b ^ (c v ((b v c) ^ (a v (d v e)))))
1615lor 70 . . . 4 (a v (b ^ (c v ((b v c) ^ ((a v d) v e))))) = (a v (b ^ (c v ((b v c) ^ (a v (d v e))))))
178, 11, 16le3tr1 140 . . 3 ((a v b) ^ ((c v d) v e)) =< (a v (b ^ (c v ((b v c) ^ ((a v d) v e)))))
18 oa3moa3.3 . . . . . . . . . 10 d =< e'
1918lecon3 157 . . . . . . . . 9 e =< d'
203, 19lel2or 170 . . . . . . . 8 (c v e) =< d'
2120lecon3 157 . . . . . . 7 d =< (c v e)'
222, 21ax-oal4 1026 . . . . . 6 ((b v a) ^ (d v (c v e))) =< (a v (b ^ (d v ((b v d) ^ (a v (c v e))))))
23 ax-a2 31 . . . . . . . . 9 (c v d) = (d v c)
2423ror 71 . . . . . . . 8 ((c v d) v e) = ((d v c) v e)
25 orass 75 . . . . . . . 8 ((d v c) v e) = (d v (c v e))
2624, 25tr 62 . . . . . . 7 ((c v d) v e) = (d v (c v e))
279, 262an 79 . . . . . 6 ((a v b) ^ ((c v d) v e)) = ((b v a) ^ (d v (c v e)))
28 orass 75 . . . . . . . . . 10 ((a v c) v e) = (a v (c v e))
2928lan 77 . . . . . . . . 9 ((b v d) ^ ((a v c) v e)) = ((b v d) ^ (a v (c v e)))
3029lor 70 . . . . . . . 8 (d v ((b v d) ^ ((a v c) v e))) = (d v ((b v d) ^ (a v (c v e))))
3130lan 77 . . . . . . 7 (b ^ (d v ((b v d) ^ ((a v c) v e)))) = (b ^ (d v ((b v d) ^ (a v (c v e)))))
3231lor 70 . . . . . 6 (a v (b ^ (d v ((b v d) ^ ((a v c) v e))))) = (a v (b ^ (d v ((b v d) ^ (a v (c v e))))))
3322, 27, 32le3tr1 140 . . . . 5 ((a v b) ^ ((c v d) v e)) =< (a v (b ^ (d v ((b v d) ^ ((a v c) v e)))))
345lecon3 157 . . . . . . . . 9 c =< e'
3534, 18lel2or 170 . . . . . . . 8 (c v d) =< e'
3635lecon3 157 . . . . . . 7 e =< (c v d)'
372, 36ax-oal4 1026 . . . . . 6 ((b v a) ^ (e v (c v d))) =< (a v (b ^ (e v ((b v e) ^ (a v (c v d))))))
38 ax-a2 31 . . . . . . 7 ((c v d) v e) = (e v (c v d))
399, 382an 79 . . . . . 6 ((a v b) ^ ((c v d) v e)) = ((b v a) ^ (e v (c v d)))
40 ax-a3 32 . . . . . . . . . 10 ((a v c) v d) = (a v (c v d))
4140lan 77 . . . . . . . . 9 ((b v e) ^ ((a v c) v d)) = ((b v e) ^ (a v (c v d)))
4241lor 70 . . . . . . . 8 (e v ((b v e) ^ ((a v c) v d))) = (e v ((b v e) ^ (a v (c v d))))
4342lan 77 . . . . . . 7 (b ^ (e v ((b v e) ^ ((a v c) v d)))) = (b ^ (e v ((b v e) ^ (a v (c v d)))))
4443lor 70 . . . . . 6 (a v (b ^ (e v ((b v e) ^ ((a v c) v d))))) = (a v (b ^ (e v ((b v e) ^ (a v (c v d))))))
4537, 39, 44le3tr1 140 . . . . 5 ((a v b) ^ ((c v d) v e)) =< (a v (b ^ (e v ((b v e) ^ ((a v c) v d)))))
4633, 45ler2an 173 . . . 4 ((a v b) ^ ((c v d) v e)) =< ((a v (b ^ (d v ((b v d) ^ ((a v c) v e))))) ^ (a v (b ^ (e v ((b v e) ^ ((a v c) v d))))))
472lel 151 . . . . . . . . . 10 (b ^ (d v ((b v d) ^ ((a v c) v e)))) =< a'
4847lecom 180 . . . . . . . . 9 (b ^ (d v ((b v d) ^ ((a v c) v e)))) C a'
4948comcom7 460 . . . . . . . 8 (b ^ (d v ((b v d) ^ ((a v c) v e)))) C a
5049comcom 453 . . . . . . 7 a C (b ^ (d v ((b v d) ^ ((a v c) v e))))
512lel 151 . . . . . . . . . 10 (b ^ (e v ((b v e) ^ ((a v c) v d)))) =< a'
5251lecom 180 . . . . . . . . 9 (b ^ (e v ((b v e) ^ ((a v c) v d)))) C a'
5352comcom7 460 . . . . . . . 8 (b ^ (e v ((b v e) ^ ((a v c) v d)))) C a
5453comcom 453 . . . . . . 7 a C (b ^ (e v ((b v e) ^ ((a v c) v d))))
5550, 54fh3 471 . . . . . 6 (a v ((b ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (b ^ (e v ((b v e) ^ ((a v c) v d)))))) = ((a v (b ^ (d v ((b v d) ^ ((a v c) v e))))) ^ (a v (b ^ (e v ((b v e) ^ ((a v c) v d))))))
5655cm 61 . . . . 5 ((a v (b ^ (d v ((b v d) ^ ((a v c) v e))))) ^ (a v (b ^ (e v ((b v e) ^ ((a v c) v d)))))) = (a v ((b ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (b ^ (e v ((b v e) ^ ((a v c) v d))))))
57 anandi 114 . . . . . . 7 (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))) = ((b ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (b ^ (e v ((b v e) ^ ((a v c) v d)))))
5857cm 61 . . . . . 6 ((b ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (b ^ (e v ((b v e) ^ ((a v c) v d))))) = (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))
5958lor 70 . . . . 5 (a v ((b ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (b ^ (e v ((b v e) ^ ((a v c) v d)))))) = (a v (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))
6056, 59tr 62 . . . 4 ((a v (b ^ (d v ((b v d) ^ ((a v c) v e))))) ^ (a v (b ^ (e v ((b v e) ^ ((a v c) v d)))))) = (a v (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))
6146, 60lbtr 139 . . 3 ((a v b) ^ ((c v d) v e)) =< (a v (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))
6217, 61ler2an 173 . 2 ((a v b) ^ ((c v d) v e)) =< ((a v (b ^ (c v ((b v c) ^ ((a v d) v e))))) ^ (a v (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))))
632lel 151 . . . . . . . 8 (b ^ (c v ((b v c) ^ ((a v d) v e)))) =< a'
6463lecom 180 . . . . . . 7 (b ^ (c v ((b v c) ^ ((a v d) v e)))) C a'
6564comcom7 460 . . . . . 6 (b ^ (c v ((b v c) ^ ((a v d) v e)))) C a
6665comcom 453 . . . . 5 a C (b ^ (c v ((b v c) ^ ((a v d) v e))))
672lel 151 . . . . . . . 8 (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))) =< a'
6867lecom 180 . . . . . . 7 (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))) C a'
6968comcom7 460 . . . . . 6 (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))) C a
7069comcom 453 . . . . 5 a C (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))
7166, 70fh3 471 . . . 4 (a v ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))) = ((a v (b ^ (c v ((b v c) ^ ((a v d) v e))))) ^ (a v (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))))
7271ax-r1 35 . . 3 ((a v (b ^ (c v ((b v c) ^ ((a v d) v e))))) ^ (a v (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))) = (a v ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))))
73 anass 76 . . . . . 6 ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))) = (b ^ ((c v ((b v c) ^ ((a v d) v e))) ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))
7473cm 61 . . . . 5 (b ^ ((c v ((b v c) ^ ((a v d) v e))) ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))) = ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))
75 anandi 114 . . . . . 6 (b ^ ((c v ((b v c) ^ ((a v d) v e))) ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))) = ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))
7675ax-r1 35 . . . . 5 ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))) = (b ^ ((c v ((b v c) ^ ((a v d) v e))) ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))
77 anass 76 . . . . 5 (((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (e v ((b v e) ^ ((a v c) v d)))) = ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))
7874, 76, 773tr1 63 . . . 4 ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d)))))) = (((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (e v ((b v e) ^ ((a v c) v d))))
7978lor 70 . . 3 (a v ((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))) = (a v (((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (e v ((b v e) ^ ((a v c) v d)))))
8072, 79tr 62 . 2 ((a v (b ^ (c v ((b v c) ^ ((a v d) v e))))) ^ (a v (b ^ ((d v ((b v d) ^ ((a v c) v e))) ^ (e v ((b v e) ^ ((a v c) v d))))))) = (a v (((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (e v ((b v e) ^ ((a v c) v d)))))
8162, 80lbtr 139 1 ((a v b) ^ ((c v d) v e)) =< (a v (((b ^ (c v ((b v c) ^ ((a v d) v e)))) ^ (d v ((b v d) ^ ((a v c) v e)))) ^ (e v ((b v e) ^ ((a v c) v d)))))
Colors of variables: term
Syntax hints:   =< wle 2  'wn 4   v wo 6   ^ wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439  ax-oal4 1026
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator