| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > lecon3 | Unicode version | ||
| Description: Contrapositive for l.e. |
| Ref | Expression |
|---|---|
| lecon3.1 |
|
| Ref | Expression |
|---|---|
| lecon3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lecon3.1 |
. . . 4
| |
| 2 | 1 | lecon 154 |
. . 3
|
| 3 | 2 | lecon2 156 |
. 2
|
| 4 | 3 | lecon1 155 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
| This theorem is referenced by: ortha 438 mhlemlem1 874 mhlem 876 e2ast2 894 e2astlem1 895 govar2 897 gomaex3lem2 915 oa3to4lem6 950 oa3to4 951 oa4to6 965 oa3moa3 1029 |
| Copyright terms: Public domain | W3C validator |