| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3to4lem3 | Unicode version | ||
| Description: Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). |
| Ref | Expression |
|---|---|
| oa3to4lem.1 |
|
| oa3to4lem.2 |
|
| oa3to4lem.3 |
|
| Ref | Expression |
|---|---|
| oa3to4lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa3to4lem.1 |
. . . 4
| |
| 2 | oa3to4lem.2 |
. . . 4
| |
| 3 | oa3to4lem.3 |
. . . 4
| |
| 4 | 1, 2, 3 | oa3to4lem1 945 |
. . 3
|
| 5 | 1, 2, 3 | oa3to4lem2 946 |
. . . 4
|
| 6 | 4, 5 | le2an 169 |
. . . . 5
|
| 7 | 6 | lelor 166 |
. . . 4
|
| 8 | 5, 7 | le2an 169 |
. . 3
|
| 9 | 4, 8 | le2or 168 |
. 2
|
| 10 | 9 | lelan 167 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oa3to4lem4 948 |
| Copyright terms: Public domain | W3C validator |