| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3to4lem1 | Unicode version | ||
| Description: Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). |
| Ref | Expression |
|---|---|
| oa3to4lem.1 |
|
| oa3to4lem.2 |
|
| oa3to4lem.3 |
|
| Ref | Expression |
|---|---|
| oa3to4lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leor 159 |
. . . 4
| |
| 2 | comid 187 |
. . . . . . . . 9
| |
| 3 | 2 | comcom3 454 |
. . . . . . . 8
|
| 4 | oa3to4lem.1 |
. . . . . . . . 9
| |
| 5 | 4 | lecom 180 |
. . . . . . . 8
|
| 6 | 3, 5 | fh3 471 |
. . . . . . 7
|
| 7 | ancom 74 |
. . . . . . . 8
| |
| 8 | df-t 41 |
. . . . . . . . . 10
| |
| 9 | ax-a2 31 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | ax-r2 36 |
. . . . . . . . 9
|
| 11 | 10 | ran 78 |
. . . . . . . 8
|
| 12 | an1 106 |
. . . . . . . 8
| |
| 13 | 7, 11, 12 | 3tr2 64 |
. . . . . . 7
|
| 14 | 6, 13 | ax-r2 36 |
. . . . . 6
|
| 15 | 14 | ax-r1 35 |
. . . . 5
|
| 16 | anidm 111 |
. . . . . . . . 9
| |
| 17 | 16 | ran 78 |
. . . . . . . 8
|
| 18 | 17 | ax-r1 35 |
. . . . . . 7
|
| 19 | anass 76 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-r2 36 |
. . . . . 6
|
| 21 | 20 | lor 70 |
. . . . 5
|
| 22 | 15, 21 | ax-r2 36 |
. . . 4
|
| 23 | 1, 22 | lbtr 139 |
. . 3
|
| 24 | leo 158 |
. . . . 5
| |
| 25 | 24 | lelan 167 |
. . . 4
|
| 26 | 25 | lelor 166 |
. . 3
|
| 27 | 23, 26 | letr 137 |
. 2
|
| 28 | oa3to4lem.3 |
. . . . 5
| |
| 29 | 28 | ud1lem0a 255 |
. . . 4
|
| 30 | df-i1 44 |
. . . 4
| |
| 31 | 29, 30 | ax-r2 36 |
. . 3
|
| 32 | 31 | ax-r1 35 |
. 2
|
| 33 | 27, 32 | lbtr 139 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oa3to4lem3 947 |
| Copyright terms: Public domain | W3C validator |