| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3to4lem6 | Unicode version | ||
| Description: Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The first 2 hypotheses are those for 4-OA. The next 3 are variable substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic only. |
| Ref | Expression |
|---|---|
| oa3to4lem6.oa4.1 |
|
| oa3to4lem6.oa4.2 |
|
| oa3to4lem6.3 |
|
| oa3to4lem6.4 |
|
| oa3to4lem6.5 |
|
| oa3to4lem6.oa3 |
|
| Ref | Expression |
|---|---|
| oa3to4lem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa3to4lem6.oa4.1 |
. . . . . 6
| |
| 2 | 1 | lecon3 157 |
. . . . 5
|
| 3 | 2 | lecon 154 |
. . . 4
|
| 4 | oa3to4lem6.oa4.2 |
. . . . . 6
| |
| 5 | 4 | lecon3 157 |
. . . . 5
|
| 6 | 5 | lecon 154 |
. . . 4
|
| 7 | id 59 |
. . . 4
| |
| 8 | oa3to4lem6.oa3 |
. . . . 5
| |
| 9 | oa3to4lem6.4 |
. . . . . 6
| |
| 10 | oa3to4lem6.3 |
. . . . . . . 8
| |
| 11 | 9, 10 | ud1lem0ab 257 |
. . . . . . 7
|
| 12 | oa3to4lem6.5 |
. . . . . . . . 9
| |
| 13 | 12, 10 | ud1lem0ab 257 |
. . . . . . . 8
|
| 14 | 9, 12 | 2an 79 |
. . . . . . . . 9
|
| 15 | 11, 13 | 2an 79 |
. . . . . . . . 9
|
| 16 | 14, 15 | 2or 72 |
. . . . . . . 8
|
| 17 | 13, 16 | 2an 79 |
. . . . . . 7
|
| 18 | 11, 17 | 2or 72 |
. . . . . 6
|
| 19 | 9, 18 | 2an 79 |
. . . . 5
|
| 20 | 9, 10 | 2an 79 |
. . . . . 6
|
| 21 | 12, 10 | 2an 79 |
. . . . . 6
|
| 22 | 20, 21 | 2or 72 |
. . . . 5
|
| 23 | 8, 19, 22 | le3tr2 141 |
. . . 4
|
| 24 | 3, 6, 7, 23 | oa3to4lem4 948 |
. . 3
|
| 25 | anor3 90 |
. . . . . . . . . . 11
| |
| 26 | anor3 90 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | 2or 72 |
. . . . . . . . . 10
|
| 28 | oran3 93 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | ax-r2 36 |
. . . . . . . . 9
|
| 30 | 29 | lan 77 |
. . . . . . . 8
|
| 31 | anor3 90 |
. . . . . . . 8
| |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . 7
|
| 33 | 32 | lor 70 |
. . . . . 6
|
| 34 | oran3 93 |
. . . . . 6
| |
| 35 | 33, 34 | ax-r2 36 |
. . . . 5
|
| 36 | 35 | lan 77 |
. . . 4
|
| 37 | anor3 90 |
. . . 4
| |
| 38 | 36, 37 | ax-r2 36 |
. . 3
|
| 39 | anor3 90 |
. . . . 5
| |
| 40 | anor3 90 |
. . . . 5
| |
| 41 | 39, 40 | 2or 72 |
. . . 4
|
| 42 | oran3 93 |
. . . 4
| |
| 43 | 41, 42 | ax-r2 36 |
. . 3
|
| 44 | 24, 38, 43 | le3tr2 141 |
. 2
|
| 45 | 44 | lecon1 155 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oa3to4 951 |
| Copyright terms: Public domain | W3C validator |