| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa4uto4g | Unicode version | ||
| Description: Derivation of "Godowski/Greechie" 4-variable proper OA law variant from "universal" variant oa4to4u2 974. |
| Ref | Expression |
|---|---|
| oa4uto4g.1 |
|
| oa4uto4g.4 |
|
| Ref | Expression |
|---|---|
| oa4uto4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 |
. . . . . . . 8
| |
| 2 | ancom 74 |
. . . . . . . 8
| |
| 3 | 1, 2 | 2or 72 |
. . . . . . 7
|
| 4 | 3 | ax-r5 38 |
. . . . . 6
|
| 5 | 4 | lan 77 |
. . . . 5
|
| 6 | 5 | lor 70 |
. . . 4
|
| 7 | 6 | lan 77 |
. . 3
|
| 8 | u1lem9a 777 |
. . . . . 6
| |
| 9 | 8 | lecon1 155 |
. . . . 5
|
| 10 | u1lem9a 777 |
. . . . . . . . . . 11
| |
| 11 | 10 | lecon1 155 |
. . . . . . . . . 10
|
| 12 | 9, 11 | le2an 169 |
. . . . . . . . 9
|
| 13 | 12 | leror 152 |
. . . . . . . 8
|
| 14 | oa4uto4g.4 |
. . . . . . . . 9
| |
| 15 | u1lem9a 777 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | lecon1 155 |
. . . . . . . . . . . 12
|
| 17 | 11, 16 | le2an 169 |
. . . . . . . . . . 11
|
| 18 | 17 | leror 152 |
. . . . . . . . . 10
|
| 19 | 9, 16 | le2an 169 |
. . . . . . . . . . 11
|
| 20 | 19 | leror 152 |
. . . . . . . . . 10
|
| 21 | 18, 20 | le2an 169 |
. . . . . . . . 9
|
| 22 | 14, 21 | bltr 138 |
. . . . . . . 8
|
| 23 | 13, 22 | le2or 168 |
. . . . . . 7
|
| 24 | 23 | lelan 167 |
. . . . . 6
|
| 25 | 24 | lelor 166 |
. . . . 5
|
| 26 | 9, 25 | le2an 169 |
. . . 4
|
| 27 | ax-a1 30 |
. . . . . . . 8
| |
| 28 | 27 | ud1lem0b 256 |
. . . . . . 7
|
| 29 | ax-a1 30 |
. . . . . . . . 9
| |
| 30 | 29 | ud1lem0b 256 |
. . . . . . . 8
|
| 31 | 28, 30 | 2an 79 |
. . . . . . . . . 10
|
| 32 | 31 | lor 70 |
. . . . . . . . 9
|
| 33 | ancom 74 |
. . . . . . . . . 10
| |
| 34 | ax-a1 30 |
. . . . . . . . . . . . . 14
| |
| 35 | 34 | ud1lem0b 256 |
. . . . . . . . . . . . 13
|
| 36 | 28, 35 | 2an 79 |
. . . . . . . . . . . 12
|
| 37 | 36 | lor 70 |
. . . . . . . . . . 11
|
| 38 | 30, 35 | 2an 79 |
. . . . . . . . . . . 12
|
| 39 | 38 | lor 70 |
. . . . . . . . . . 11
|
| 40 | 37, 39 | 2an 79 |
. . . . . . . . . 10
|
| 41 | 33, 40 | ax-r2 36 |
. . . . . . . . 9
|
| 42 | 32, 41 | 2or 72 |
. . . . . . . 8
|
| 43 | 30, 42 | 2an 79 |
. . . . . . 7
|
| 44 | 28, 43 | 2or 72 |
. . . . . 6
|
| 45 | 44 | lan 77 |
. . . . 5
|
| 46 | oa4uto4g.1 |
. . . . 5
| |
| 47 | 45, 46 | bltr 138 |
. . . 4
|
| 48 | 26, 47 | letr 137 |
. . 3
|
| 49 | 7, 48 | bltr 138 |
. 2
|
| 50 | 49 | oau 929 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: 4oa 1039 |
| Copyright terms: Public domain | W3C validator |