| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa4gto4u | Unicode version | ||
| Description: A "universal" 4-OA derived from the Godowski/Greechie form. The hypotheses are the Godowski/Greechie form of the proper 4-OA and substitutions into it. |
| Ref | Expression |
|---|---|
| oa4gto4u.1 |
|
| oa4gto4u.2 |
|
| oa4gto4u3 |
|
| oa4gto4u.4 |
|
| Ref | Expression |
|---|---|
| oa4gto4u |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa4gto4u.2 |
. . . 4
| |
| 2 | 1 | ud1lem0b 256 |
. . . . . 6
|
| 3 | u1lem12 781 |
. . . . . 6
| |
| 4 | 2, 3 | ax-r2 36 |
. . . . 5
|
| 5 | oa4gto4u3 |
. . . . . . . 8
| |
| 6 | 5 | ud1lem0b 256 |
. . . . . . 7
|
| 7 | u1lem12 781 |
. . . . . . 7
| |
| 8 | 6, 7 | ax-r2 36 |
. . . . . 6
|
| 9 | ancom 74 |
. . . . . . . . 9
| |
| 10 | 1, 5 | 2an 79 |
. . . . . . . . 9
|
| 11 | 9, 10 | ax-r2 36 |
. . . . . . . 8
|
| 12 | ancom 74 |
. . . . . . . . 9
| |
| 13 | 4, 8 | 2an 79 |
. . . . . . . . 9
|
| 14 | 12, 13 | ax-r2 36 |
. . . . . . . 8
|
| 15 | 11, 14 | 2or 72 |
. . . . . . 7
|
| 16 | ancom 74 |
. . . . . . . 8
| |
| 17 | oa4gto4u.4 |
. . . . . . . . . . 11
| |
| 18 | 1, 17 | 2an 79 |
. . . . . . . . . 10
|
| 19 | 17 | ud1lem0b 256 |
. . . . . . . . . . . 12
|
| 20 | u1lem12 781 |
. . . . . . . . . . . 12
| |
| 21 | 19, 20 | ax-r2 36 |
. . . . . . . . . . 11
|
| 22 | 4, 21 | 2an 79 |
. . . . . . . . . 10
|
| 23 | 18, 22 | 2or 72 |
. . . . . . . . 9
|
| 24 | 5, 17 | 2an 79 |
. . . . . . . . . 10
|
| 25 | 8, 21 | 2an 79 |
. . . . . . . . . 10
|
| 26 | 24, 25 | 2or 72 |
. . . . . . . . 9
|
| 27 | 23, 26 | 2an 79 |
. . . . . . . 8
|
| 28 | 16, 27 | ax-r2 36 |
. . . . . . 7
|
| 29 | 15, 28 | 2or 72 |
. . . . . 6
|
| 30 | 8, 29 | 2an 79 |
. . . . 5
|
| 31 | 4, 30 | 2or 72 |
. . . 4
|
| 32 | 1, 31 | 2an 79 |
. . 3
|
| 33 | 32 | ax-r1 35 |
. 2
|
| 34 | oa4gto4u.1 |
. . 3
| |
| 35 | 34 | oaur 930 |
. 2
|
| 36 | 33, 35 | bltr 138 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: d6oa 997 axoa4 1034 |
| Copyright terms: Public domain | W3C validator |