| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oadistb | Unicode version | ||
| Description: Distributive law derived from OAL. |
| Ref | Expression |
|---|---|
| oadistb.2 |
|
| oadistb.1 |
|
| Ref | Expression |
|---|---|
| oadistb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oadistb.2 |
. . . . . . 7
| |
| 2 | 1 | df2le2 136 |
. . . . . 6
|
| 3 | 2 | ran 78 |
. . . . 5
|
| 4 | 3 | ax-r1 35 |
. . . 4
|
| 5 | anass 76 |
. . . . 5
| |
| 6 | oadistb.1 |
. . . . . . 7
| |
| 7 | 6 | oagen1 1014 |
. . . . . 6
|
| 8 | 7 | lan 77 |
. . . . 5
|
| 9 | 5, 8 | ax-r2 36 |
. . . 4
|
| 10 | 4, 9 | ax-r2 36 |
. . 3
|
| 11 | leor 159 |
. . 3
| |
| 12 | 10, 11 | bltr 138 |
. 2
|
| 13 | ledi 174 |
. 2
| |
| 14 | 12, 13 | lebi 145 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-3oa 998 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |