| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ledi | Unicode version | ||
| Description: Half of distributive law. |
| Ref | Expression |
|---|---|
| ledi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 111 |
. . 3
| |
| 2 | 1 | ax-r1 35 |
. 2
|
| 3 | lea 160 |
. . . . 5
| |
| 4 | lea 160 |
. . . . 5
| |
| 5 | 3, 4 | le2or 168 |
. . . 4
|
| 6 | oridm 110 |
. . . 4
| |
| 7 | 5, 6 | lbtr 139 |
. . 3
|
| 8 | ancom 74 |
. . . . 5
| |
| 9 | lea 160 |
. . . . 5
| |
| 10 | 8, 9 | bltr 138 |
. . . 4
|
| 11 | ancom 74 |
. . . . 5
| |
| 12 | lea 160 |
. . . . 5
| |
| 13 | 11, 12 | bltr 138 |
. . . 4
|
| 14 | 10, 13 | le2or 168 |
. . 3
|
| 15 | 7, 14 | le2an 169 |
. 2
|
| 16 | 2, 15 | bltr 138 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: ledir 175 distlem 188 wwfh1 216 wwfh2 217 ska2 432 fh1 469 fh2 470 i3orlem2 553 distid 887 oadist 1019 oadistb 1020 oadistc 1022 oadistd 1023 4oadist 1044 |
| Copyright terms: Public domain | W3C validator |