| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oadp35 | Unicode version | ||
| Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(5) |
| Ref | Expression |
|---|---|
| oadp35.1 |
c0 |
| oadp35.2 |
c1 |
| oadp35.3 |
p0 |
| Ref | Expression |
|---|---|
| oadp35 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oadp35.1 |
. 2
c0 | |
| 2 | oadp35.2 |
. 2
c1 | |
| 3 | id 59 |
. 2
| |
| 4 | oadp35.3 |
. 2
p0 | |
| 5 | id 59 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | dp35lem0 1177 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1120 ax-arg 1151 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |