Proof of Theorem oadp35lemc
| Step | Hyp | Ref
| Expression |
| 1 | | or32 82 |
. . 3
  a0 b0
b1 c2 c0 c1    a0 b0 c2 c0 c1  b1 |
| 2 | | orcom 73 |
. . 3
  a0 b0
c2 c0 c1  b1 b1  a0 b0 c2 c0 c1    |
| 3 | | leo 158 |
. . . . . . . 8
a0 a0 a1 |
| 4 | | leo 158 |
. . . . . . . 8
b0 b0 b1 |
| 5 | 3, 4 | le2an 169 |
. . . . . . 7
a0 b0  a0 a1 b0 b1  |
| 6 | | oadp35lem.3 |
. . . . . . . 8
c2  a0 a1 b0 b1  |
| 7 | 6 | cm 61 |
. . . . . . 7
 a0
a1
b0 b1 c2 |
| 8 | 5, 7 | lbtr 139 |
. . . . . 6
a0 b0 c2 |
| 9 | | leo 158 |
. . . . . . . . 9
a0 a0 a2 |
| 10 | | leo 158 |
. . . . . . . . 9
b0 b0 b2 |
| 11 | 9, 10 | le2an 169 |
. . . . . . . 8
a0 b0  a0 a2 b0 b2  |
| 12 | | oadp35lem.2 |
. . . . . . . . 9
c1  a0 a2 b0 b2  |
| 13 | 12 | cm 61 |
. . . . . . . 8
 a0
a2
b0 b2 c1 |
| 14 | 11, 13 | lbtr 139 |
. . . . . . 7
a0 b0 c1 |
| 15 | 14 | lerr 150 |
. . . . . 6
a0 b0 c0 c1 |
| 16 | 8, 15 | ler2an 173 |
. . . . 5
a0 b0 c2 c0 c1  |
| 17 | 16 | df-le2 131 |
. . . 4
 a0
b0
c2 c0 c1  c2 c0 c1  |
| 18 | 17 | lor 70 |
. . 3
b1  a0 b0 c2 c0 c1   b1 c2 c0 c1   |
| 19 | 1, 2, 18 | 3tr 65 |
. 2
  a0 b0
b1 c2 c0 c1  b1 c2 c0
c1   |
| 20 | 19 | lan 77 |
1
b0   a0
b0
b1 c2 c0 c1   b0 b1 c2 c0
c1    |