| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u3lem13a | Unicode version | ||
| Description: Lemma for unified implication study. |
| Ref | Expression |
|---|---|
| u3lem13a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i3 46 |
. 2
| |
| 2 | ancom 74 |
. . . . . . 7
| |
| 3 | u3lemnana 647 |
. . . . . . 7
| |
| 4 | 2, 3 | ax-r2 36 |
. . . . . 6
|
| 5 | ax-a1 30 |
. . . . . . . . 9
| |
| 6 | 5 | ax-r1 35 |
. . . . . . . 8
|
| 7 | 6 | lan 77 |
. . . . . . 7
|
| 8 | ancom 74 |
. . . . . . . 8
| |
| 9 | u3lemana 607 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-r2 36 |
. . . . . . 7
|
| 11 | 7, 10 | ax-r2 36 |
. . . . . 6
|
| 12 | 4, 11 | 2or 72 |
. . . . 5
|
| 13 | comanr1 464 |
. . . . . . . 8
| |
| 14 | comanr1 464 |
. . . . . . . 8
| |
| 15 | 13, 14 | com2or 483 |
. . . . . . 7
|
| 16 | comorr 184 |
. . . . . . . . 9
| |
| 17 | comorr 184 |
. . . . . . . . 9
| |
| 18 | 16, 17 | com2an 484 |
. . . . . . . 8
|
| 19 | 18 | comcom3 454 |
. . . . . . 7
|
| 20 | 15, 19 | fh4r 476 |
. . . . . 6
|
| 21 | ax-a2 31 |
. . . . . . . . 9
| |
| 22 | lea 160 |
. . . . . . . . . . 11
| |
| 23 | lea 160 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | lel2or 170 |
. . . . . . . . . 10
|
| 25 | 24 | df-le2 131 |
. . . . . . . . 9
|
| 26 | 21, 25 | ax-r2 36 |
. . . . . . . 8
|
| 27 | anor2 89 |
. . . . . . . . . . . . 13
| |
| 28 | anor3 90 |
. . . . . . . . . . . . 13
| |
| 29 | 27, 28 | 2or 72 |
. . . . . . . . . . . 12
|
| 30 | ax-a2 31 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | ax-r2 36 |
. . . . . . . . . . 11
|
| 32 | oran3 93 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | ax-r2 36 |
. . . . . . . . . 10
|
| 34 | 33 | lor 70 |
. . . . . . . . 9
|
| 35 | df-t 41 |
. . . . . . . . . 10
| |
| 36 | 35 | ax-r1 35 |
. . . . . . . . 9
|
| 37 | 34, 36 | ax-r2 36 |
. . . . . . . 8
|
| 38 | 26, 37 | 2an 79 |
. . . . . . 7
|
| 39 | an1 106 |
. . . . . . 7
| |
| 40 | 38, 39 | ax-r2 36 |
. . . . . 6
|
| 41 | 20, 40 | ax-r2 36 |
. . . . 5
|
| 42 | 12, 41 | ax-r2 36 |
. . . 4
|
| 43 | comid 187 |
. . . . . . 7
| |
| 44 | 43 | comcom2 183 |
. . . . . 6
|
| 45 | comi31 508 |
. . . . . . 7
| |
| 46 | 45 | comcom2 183 |
. . . . . 6
|
| 47 | 44, 46 | fh1 469 |
. . . . 5
|
| 48 | dff 101 |
. . . . . . . 8
| |
| 49 | 48 | ax-r1 35 |
. . . . . . 7
|
| 50 | ancom 74 |
. . . . . . . 8
| |
| 51 | u3lemnaa 642 |
. . . . . . . 8
| |
| 52 | 50, 51 | ax-r2 36 |
. . . . . . 7
|
| 53 | 49, 52 | 2or 72 |
. . . . . 6
|
| 54 | ax-a2 31 |
. . . . . . 7
| |
| 55 | or0 102 |
. . . . . . 7
| |
| 56 | 54, 55 | ax-r2 36 |
. . . . . 6
|
| 57 | 53, 56 | ax-r2 36 |
. . . . 5
|
| 58 | 47, 57 | ax-r2 36 |
. . . 4
|
| 59 | 42, 58 | 2or 72 |
. . 3
|
| 60 | ax-a1 30 |
. . . . . . 7
| |
| 61 | 60 | ax-r1 35 |
. . . . . 6
|
| 62 | 61 | lan 77 |
. . . . 5
|
| 63 | 62 | lor 70 |
. . . 4
|
| 64 | df-i1 44 |
. . . . 5
| |
| 65 | 64 | ax-r1 35 |
. . . 4
|
| 66 | 63, 65 | ax-r2 36 |
. . 3
|
| 67 | 59, 66 | ax-r2 36 |
. 2
|
| 68 | 1, 67 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u3lem14aa2 793 |
| Copyright terms: Public domain | W3C validator |