| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u5lem5 | Unicode version | ||
| Description: Lemma for unified implication study. |
| Ref | Expression |
|---|---|
| u5lem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i5 48 |
. 2
| |
| 2 | u5lemc1 684 |
. . . . . . . 8
| |
| 3 | 2 | comcom 453 |
. . . . . . 7
|
| 4 | 3 | comcom2 183 |
. . . . . . 7
|
| 5 | 3, 4 | fh1r 473 |
. . . . . 6
|
| 6 | 5 | ax-r1 35 |
. . . . 5
|
| 7 | ancom 74 |
. . . . . 6
| |
| 8 | df-t 41 |
. . . . . . . . 9
| |
| 9 | 8 | ax-r1 35 |
. . . . . . . 8
|
| 10 | 9 | lan 77 |
. . . . . . 7
|
| 11 | an1 106 |
. . . . . . 7
| |
| 12 | 10, 11 | ax-r2 36 |
. . . . . 6
|
| 13 | 7, 12 | ax-r2 36 |
. . . . 5
|
| 14 | 6, 13 | ax-r2 36 |
. . . 4
|
| 15 | 14 | ax-r5 38 |
. . 3
|
| 16 | 2 | comcom3 454 |
. . . . 5
|
| 17 | 2 | comcom4 455 |
. . . . 5
|
| 18 | 16, 17 | fh4 472 |
. . . 4
|
| 19 | df-t 41 |
. . . . . . 7
| |
| 20 | 19 | ax-r1 35 |
. . . . . 6
|
| 21 | 20 | lan 77 |
. . . . 5
|
| 22 | an1 106 |
. . . . . 6
| |
| 23 | u5lemona 629 |
. . . . . 6
| |
| 24 | 22, 23 | ax-r2 36 |
. . . . 5
|
| 25 | 21, 24 | ax-r2 36 |
. . . 4
|
| 26 | 18, 25 | ax-r2 36 |
. . 3
|
| 27 | 15, 26 | ax-r2 36 |
. 2
|
| 28 | 1, 27 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i5 48 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u5lem6 769 |
| Copyright terms: Public domain | W3C validator |