| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud1lem3 | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud1lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 |
. 2
| |
| 2 | ud1lem0c 277 |
. . . 4
| |
| 3 | 2 | con3 68 |
. . . . 5
|
| 4 | 3 | ran 78 |
. . . 4
|
| 5 | 2, 4 | 2or 72 |
. . 3
|
| 6 | comid 187 |
. . . . . 6
| |
| 7 | 6 | comcom2 183 |
. . . . 5
|
| 8 | comor1 461 |
. . . . . . 7
| |
| 9 | 8 | comcom2 183 |
. . . . . . . 8
|
| 10 | comor2 462 |
. . . . . . . . 9
| |
| 11 | 10 | comcom2 183 |
. . . . . . . 8
|
| 12 | 9, 11 | com2or 483 |
. . . . . . 7
|
| 13 | 8, 12 | com2an 484 |
. . . . . 6
|
| 14 | 13 | comcom 453 |
. . . . 5
|
| 15 | 7, 14 | fh3 471 |
. . . 4
|
| 16 | ancom 74 |
. . . . 5
| |
| 17 | df-t 41 |
. . . . . . . 8
| |
| 18 | 17 | ax-r1 35 |
. . . . . . 7
|
| 19 | 18 | lan 77 |
. . . . . 6
|
| 20 | an1 106 |
. . . . . . 7
| |
| 21 | comorr 184 |
. . . . . . . . 9
| |
| 22 | comorr 184 |
. . . . . . . . . . 11
| |
| 23 | 22 | comcom2 183 |
. . . . . . . . . 10
|
| 24 | 23 | comcom5 458 |
. . . . . . . . 9
|
| 25 | 21, 24 | fh4r 476 |
. . . . . . . 8
|
| 26 | ax-a2 31 |
. . . . . . . . . . 11
| |
| 27 | or4 84 |
. . . . . . . . . . . 12
| |
| 28 | df-t 41 |
. . . . . . . . . . . . . . 15
| |
| 29 | 28 | ax-r1 35 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | lor 70 |
. . . . . . . . . . . . 13
|
| 31 | or1 104 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . . . . . . 12
|
| 33 | 27, 32 | ax-r2 36 |
. . . . . . . . . . 11
|
| 34 | 26, 33 | ax-r2 36 |
. . . . . . . . . 10
|
| 35 | 34 | lan 77 |
. . . . . . . . 9
|
| 36 | an1 106 |
. . . . . . . . . 10
| |
| 37 | ax-a3 32 |
. . . . . . . . . . . 12
| |
| 38 | 37 | ax-r1 35 |
. . . . . . . . . . 11
|
| 39 | oridm 110 |
. . . . . . . . . . . 12
| |
| 40 | 39 | ax-r5 38 |
. . . . . . . . . . 11
|
| 41 | 38, 40 | ax-r2 36 |
. . . . . . . . . 10
|
| 42 | 36, 41 | ax-r2 36 |
. . . . . . . . 9
|
| 43 | 35, 42 | ax-r2 36 |
. . . . . . . 8
|
| 44 | 25, 43 | ax-r2 36 |
. . . . . . 7
|
| 45 | 20, 44 | ax-r2 36 |
. . . . . 6
|
| 46 | 19, 45 | ax-r2 36 |
. . . . 5
|
| 47 | 16, 46 | ax-r2 36 |
. . . 4
|
| 48 | 15, 47 | ax-r2 36 |
. . 3
|
| 49 | 5, 48 | ax-r2 36 |
. 2
|
| 50 | 1, 49 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: ud1 595 |
| Copyright terms: Public domain | W3C validator |