| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud1lem0c | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud1lem0c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 |
. . 3
| |
| 2 | df-a 40 |
. . . . . 6
| |
| 3 | df-a 40 |
. . . . . . . . 9
| |
| 4 | 3 | ax-r1 35 |
. . . . . . . 8
|
| 5 | 4 | lor 70 |
. . . . . . 7
|
| 6 | 5 | ax-r4 37 |
. . . . . 6
|
| 7 | 2, 6 | ax-r2 36 |
. . . . 5
|
| 8 | 7 | ax-r1 35 |
. . . 4
|
| 9 | 8 | con3 68 |
. . 3
|
| 10 | 1, 9 | ax-r2 36 |
. 2
|
| 11 | 10 | con2 67 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 |
| This theorem is referenced by: ud1lem1 560 ud1lem3 562 u1lemc6 706 u1lem11 780 i1abs 801 sa5 836 elimcons2 869 kb10iii 893 |
| Copyright terms: Public domain | W3C validator |