| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud3lem3c | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud3lem3c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud3lem0c 279 |
. . . 4
| |
| 2 | an32 83 |
. . . . 5
| |
| 3 | ancom 74 |
. . . . 5
| |
| 4 | 2, 3 | ax-r2 36 |
. . . 4
|
| 5 | 1, 4 | ax-r2 36 |
. . 3
|
| 6 | 5 | ax-r5 38 |
. 2
|
| 7 | ax-a2 31 |
. . 3
| |
| 8 | orabs 120 |
. . 3
| |
| 9 | 7, 8 | ax-r2 36 |
. 2
|
| 10 | 6, 9 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i3 46 |
| This theorem is referenced by: ud3lem3d 575 |
| Copyright terms: Public domain | W3C validator |