| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud3lem3d | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud3lem3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i3 46 |
. . 3
| |
| 2 | ud3lem3c 574 |
. . 3
| |
| 3 | 1, 2 | 2an 79 |
. 2
|
| 4 | comor1 461 |
. . . . . . 7
| |
| 5 | 4 | comcom2 183 |
. . . . . 6
|
| 6 | comor2 462 |
. . . . . 6
| |
| 7 | 5, 6 | com2an 484 |
. . . . 5
|
| 8 | 6 | comcom2 183 |
. . . . . 6
|
| 9 | 5, 8 | com2an 484 |
. . . . 5
|
| 10 | 7, 9 | com2or 483 |
. . . 4
|
| 11 | 5, 6 | com2or 483 |
. . . . 5
|
| 12 | 4, 11 | com2an 484 |
. . . 4
|
| 13 | 10, 12 | fh1r 473 |
. . 3
|
| 14 | coman1 185 |
. . . . . . . . 9
| |
| 15 | 14 | comcom7 460 |
. . . . . . . 8
|
| 16 | coman2 186 |
. . . . . . . 8
| |
| 17 | 15, 16 | com2or 483 |
. . . . . . 7
|
| 18 | 16 | comcom2 183 |
. . . . . . . 8
|
| 19 | 14, 18 | com2an 484 |
. . . . . . 7
|
| 20 | 17, 19 | fh2r 474 |
. . . . . 6
|
| 21 | lear 161 |
. . . . . . . . . 10
| |
| 22 | leor 159 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | letr 137 |
. . . . . . . . 9
|
| 24 | 23 | df2le2 136 |
. . . . . . . 8
|
| 25 | oran 87 |
. . . . . . . . . 10
| |
| 26 | 25 | lan 77 |
. . . . . . . . 9
|
| 27 | dff 101 |
. . . . . . . . . 10
| |
| 28 | 27 | ax-r1 35 |
. . . . . . . . 9
|
| 29 | 26, 28 | ax-r2 36 |
. . . . . . . 8
|
| 30 | 24, 29 | 2or 72 |
. . . . . . 7
|
| 31 | or0 102 |
. . . . . . 7
| |
| 32 | 30, 31 | ax-r2 36 |
. . . . . 6
|
| 33 | 20, 32 | ax-r2 36 |
. . . . 5
|
| 34 | 33 | ax-r5 38 |
. . . 4
|
| 35 | lea 160 |
. . . . . . 7
| |
| 36 | leo 158 |
. . . . . . 7
| |
| 37 | 35, 36 | letr 137 |
. . . . . 6
|
| 38 | 37 | df2le2 136 |
. . . . 5
|
| 39 | 38 | lor 70 |
. . . 4
|
| 40 | 34, 39 | ax-r2 36 |
. . 3
|
| 41 | 13, 40 | ax-r2 36 |
. 2
|
| 42 | 3, 41 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: ud3lem3 576 |
| Copyright terms: Public domain | W3C validator |