| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wdid0id5 | Unicode version | ||
| Description: Show that quantum identity follows from classical identity in a WDOL. |
| Ref | Expression |
|---|---|
| wdid0id5.1 |
|
| Ref | Expression |
|---|---|
| wdid0id5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfb 94 |
. 2
| |
| 2 | df-id0 49 |
. . . . 5
| |
| 3 | 2 | ax-r1 35 |
. . . 4
|
| 4 | wdid0id5.1 |
. . . 4
| |
| 5 | 3, 4 | ax-r2 36 |
. . 3
|
| 6 | wa4 194 |
. . . . . . . . 9
| |
| 7 | 6 | wleoa 376 |
. . . . . . . 8
|
| 8 | 7 | wr1 197 |
. . . . . . 7
|
| 9 | wancom 203 |
. . . . . . 7
| |
| 10 | 8, 9 | wr2 371 |
. . . . . 6
|
| 11 | wa2 192 |
. . . . . 6
| |
| 12 | wddi3 1107 |
. . . . . 6
| |
| 13 | 10, 11, 12 | w3tr1 374 |
. . . . 5
|
| 14 | wa4 194 |
. . . . . . . 8
| |
| 15 | 14 | wleoa 376 |
. . . . . . 7
|
| 16 | 15 | wr1 197 |
. . . . . 6
|
| 17 | wa2 192 |
. . . . . 6
| |
| 18 | wddi3 1107 |
. . . . . 6
| |
| 19 | 16, 17, 18 | w3tr1 374 |
. . . . 5
|
| 20 | 13, 19 | w2an 373 |
. . . 4
|
| 21 | wancom 203 |
. . . 4
| |
| 22 | wddi4 1108 |
. . . 4
| |
| 23 | 20, 21, 22 | w3tr1 374 |
. . 3
|
| 24 | 5, 23 | wwbmp 205 |
. 2
|
| 25 | 1, 24 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 ax-wdol 1102 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-id0 49 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: wdka4o 1114 |
| Copyright terms: Public domain | W3C validator |