| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wql2lem | Unicode version | ||
| Description: Classical implication inferred from Dishkant implication. |
| Ref | Expression |
|---|---|
| wql2lem.1 |
|
| Ref | Expression |
|---|---|
| wql2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le1 146 |
. 2
| |
| 2 | df-i2 45 |
. . . 4
| |
| 3 | wql2lem.1 |
. . . 4
| |
| 4 | ax-a2 31 |
. . . 4
| |
| 5 | 2, 3, 4 | 3tr2 64 |
. . 3
|
| 6 | lea 160 |
. . . 4
| |
| 7 | 6 | leror 152 |
. . 3
|
| 8 | 5, 7 | bltr 138 |
. 2
|
| 9 | 1, 8 | lebi 145 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: wql2lem3 290 |
| Copyright terms: Public domain | W3C validator |