![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > wql1lem | Unicode version |
Description: Classical implication inferred from Sakaki implication. |
Ref | Expression |
---|---|
wql1lem.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
wql1lem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le1 146 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | wql1lem.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | ax-r1 35 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-i1 44 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | lear 161 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | lelor 166 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | bltr 138 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | bltr 138 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 8 | lebi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 |
This theorem is referenced by: wql1 293 wdwom 1104 |
Copyright terms: Public domain | W3C validator |