QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  xdp53 Unicode version

Theorem xdp53 1198
Description: Part of proof (5)=>(3) in Day/Pickering 1982.
Hypotheses
Ref Expression
xdp53.1 c0 = ((a1 v a2) ^ (b1 v b2))
xdp53.2 c1 = ((a0 v a2) ^ (b0 v b2))
xdp53.3 c2 = ((a0 v a1) ^ (b0 v b1))
xdp53.4 p0 = ((a1 v b1) ^ (a2 v b2))
xdp53.5 p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))
Assertion
Ref Expression
xdp53 p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))

Proof of Theorem xdp53
StepHypRef Expression
1 leor 159 . 2 p =< (a0 v p)
2 leo 158 . . 3 a0 =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
3 xdp53.5 . . . . . . . 8 p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))
4 anass 76 . . . . . . . 8 (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2)) = ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2)))
53, 4tr 62 . . . . . . 7 p = ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2)))
6 xdp53.4 . . . . . . . . . . 11 p0 = ((a1 v b1) ^ (a2 v b2))
76lan 77 . . . . . . . . . 10 ((a0 v b0) ^ p0) = ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2)))
87cm 61 . . . . . . . . 9 ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2))) = ((a0 v b0) ^ p0)
9 leao4 165 . . . . . . . . 9 ((a0 v b0) ^ p0) =< (a0 v p0)
108, 9bltr 138 . . . . . . . 8 ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2))) =< (a0 v p0)
11 lea 160 . . . . . . . . 9 ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2))) =< (a0 v b0)
12 orcom 73 . . . . . . . . 9 (a0 v b0) = (b0 v a0)
1311, 12lbtr 139 . . . . . . . 8 ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2))) =< (b0 v a0)
1410, 13ler2an 173 . . . . . . 7 ((a0 v b0) ^ ((a1 v b1) ^ (a2 v b2))) =< ((a0 v p0) ^ (b0 v a0))
155, 14bltr 138 . . . . . 6 p =< ((a0 v p0) ^ (b0 v a0))
16 leo 158 . . . . . . . 8 a0 =< (a0 v p0)
1716mldual2i 1125 . . . . . . 7 ((a0 v p0) ^ (b0 v a0)) = (((a0 v p0) ^ b0) v a0)
18 ancom 74 . . . . . . . 8 ((a0 v p0) ^ b0) = (b0 ^ (a0 v p0))
1918ror 71 . . . . . . 7 (((a0 v p0) ^ b0) v a0) = ((b0 ^ (a0 v p0)) v a0)
2017, 19tr 62 . . . . . 6 ((a0 v p0) ^ (b0 v a0)) = ((b0 ^ (a0 v p0)) v a0)
2115, 20lbtr 139 . . . . 5 p =< ((b0 ^ (a0 v p0)) v a0)
222lelor 166 . . . . 5 ((b0 ^ (a0 v p0)) v a0) =< ((b0 ^ (a0 v p0)) v (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))))
2321, 22letr 137 . . . 4 p =< ((b0 ^ (a0 v p0)) v (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))))
24 lea 160 . . . . . . . 8 (b0 ^ (a0 v p0)) =< b0
25 leor 159 . . . . . . . . 9 (b0 ^ (a0 v p0)) =< (b1 v (b0 ^ (a0 v p0)))
26 leo 158 . . . . . . . . . 10 b1 =< (b1 v ((a0 v a1) ^ (c0 v c1)))
27 leo 158 . . . . . . . . . . . . . 14 (b0 ^ (a0 v p0)) =< ((b0 ^ (a0 v p0)) v b1)
286lor 70 . . . . . . . . . . . . . . . 16 (a0 v p0) = (a0 v ((a1 v b1) ^ (a2 v b2)))
2928lan 77 . . . . . . . . . . . . . . 15 (b0 ^ (a0 v p0)) = (b0 ^ (a0 v ((a1 v b1) ^ (a2 v b2))))
30 lear 161 . . . . . . . . . . . . . . . 16 (b0 ^ (a0 v ((a1 v b1) ^ (a2 v b2)))) =< (a0 v ((a1 v b1) ^ (a2 v b2)))
31 lea 160 . . . . . . . . . . . . . . . . . 18 ((a1 v b1) ^ (a2 v b2)) =< (a1 v b1)
3231lelor 166 . . . . . . . . . . . . . . . . 17 (a0 v ((a1 v b1) ^ (a2 v b2))) =< (a0 v (a1 v b1))
33 ax-a3 32 . . . . . . . . . . . . . . . . . 18 ((a0 v a1) v b1) = (a0 v (a1 v b1))
3433cm 61 . . . . . . . . . . . . . . . . 17 (a0 v (a1 v b1)) = ((a0 v a1) v b1)
3532, 34lbtr 139 . . . . . . . . . . . . . . . 16 (a0 v ((a1 v b1) ^ (a2 v b2))) =< ((a0 v a1) v b1)
3630, 35letr 137 . . . . . . . . . . . . . . 15 (b0 ^ (a0 v ((a1 v b1) ^ (a2 v b2)))) =< ((a0 v a1) v b1)
3729, 36bltr 138 . . . . . . . . . . . . . 14 (b0 ^ (a0 v p0)) =< ((a0 v a1) v b1)
3827, 37ler2an 173 . . . . . . . . . . . . 13 (b0 ^ (a0 v p0)) =< (((b0 ^ (a0 v p0)) v b1) ^ ((a0 v a1) v b1))
39 leor 159 . . . . . . . . . . . . . . 15 b1 =< ((b0 ^ (a0 v p0)) v b1)
4039mldual2i 1125 . . . . . . . . . . . . . 14 (((b0 ^ (a0 v p0)) v b1) ^ ((a0 v a1) v b1)) = ((((b0 ^ (a0 v p0)) v b1) ^ (a0 v a1)) v b1)
41 ancom 74 . . . . . . . . . . . . . . 15 (((b0 ^ (a0 v p0)) v b1) ^ (a0 v a1)) = ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1))
4241ror 71 . . . . . . . . . . . . . 14 ((((b0 ^ (a0 v p0)) v b1) ^ (a0 v a1)) v b1) = (((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) v b1)
4340, 42tr 62 . . . . . . . . . . . . 13 (((b0 ^ (a0 v p0)) v b1) ^ ((a0 v a1) v b1)) = (((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) v b1)
4438, 43lbtr 139 . . . . . . . . . . . 12 (b0 ^ (a0 v p0)) =< (((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) v b1)
4526lelor 166 . . . . . . . . . . . 12 (((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) v b1) =< (((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) v (b1 v ((a0 v a1) ^ (c0 v c1))))
4644, 45letr 137 . . . . . . . . . . 11 (b0 ^ (a0 v p0)) =< (((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) v (b1 v ((a0 v a1) ^ (c0 v c1))))
47 lea 160 . . . . . . . . . . . . . . . 16 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (a0 v a1)
48 xdp53.1 . . . . . . . . . . . . . . . . 17 c0 = ((a1 v a2) ^ (b1 v b2))
49 xdp53.2 . . . . . . . . . . . . . . . . 17 c1 = ((a0 v a2) ^ (b0 v b2))
5048, 49, 6dp15 1160 . . . . . . . . . . . . . . . 16 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
5147, 50ler2an 173 . . . . . . . . . . . . . . 15 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((a0 v a1) ^ ((c0 v c1) v (b1 ^ (a0 v a1))))
52 lear 161 . . . . . . . . . . . . . . . 16 (b1 ^ (a0 v a1)) =< (a0 v a1)
5352mldual2i 1125 . . . . . . . . . . . . . . 15 ((a0 v a1) ^ ((c0 v c1) v (b1 ^ (a0 v a1)))) = (((a0 v a1) ^ (c0 v c1)) v (b1 ^ (a0 v a1)))
5451, 53lbtr 139 . . . . . . . . . . . . . 14 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (((a0 v a1) ^ (c0 v c1)) v (b1 ^ (a0 v a1)))
55 lea 160 . . . . . . . . . . . . . . 15 (b1 ^ (a0 v a1)) =< b1
5655lelor 166 . . . . . . . . . . . . . 14 (((a0 v a1) ^ (c0 v c1)) v (b1 ^ (a0 v a1))) =< (((a0 v a1) ^ (c0 v c1)) v b1)
5754, 56letr 137 . . . . . . . . . . . . 13 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (((a0 v a1) ^ (c0 v c1)) v b1)
58 orcom 73 . . . . . . . . . . . . 13 (((a0 v a1) ^ (c0 v c1)) v b1) = (b1 v ((a0 v a1) ^ (c0 v c1)))
5957, 58lbtr 139 . . . . . . . . . . . 12 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
60 leid 148 . . . . . . . . . . . 12 (b1 v ((a0 v a1) ^ (c0 v c1))) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
6159, 60lel2or 170 . . . . . . . . . . 11 (((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) v (b1 v ((a0 v a1) ^ (c0 v c1)))) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
6246, 61letr 137 . . . . . . . . . 10 (b0 ^ (a0 v p0)) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
6326, 62lel2or 170 . . . . . . . . 9 (b1 v (b0 ^ (a0 v p0))) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
6425, 63letr 137 . . . . . . . 8 (b0 ^ (a0 v p0)) =< (b1 v ((a0 v a1) ^ (c0 v c1)))
6524, 64ler2an 173 . . . . . . 7 (b0 ^ (a0 v p0)) =< (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
66 or32 82 . . . . . . . . . . 11 (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))) = (((a0 ^ b0) v (c2 ^ (c0 v c1))) v b1)
67 orcom 73 . . . . . . . . . . 11 (((a0 ^ b0) v (c2 ^ (c0 v c1))) v b1) = (b1 v ((a0 ^ b0) v (c2 ^ (c0 v c1))))
68 leo 158 . . . . . . . . . . . . . . . 16 a0 =< (a0 v a1)
69 leo 158 . . . . . . . . . . . . . . . 16 b0 =< (b0 v b1)
7068, 69le2an 169 . . . . . . . . . . . . . . 15 (a0 ^ b0) =< ((a0 v a1) ^ (b0 v b1))
71 xdp53.3 . . . . . . . . . . . . . . . 16 c2 = ((a0 v a1) ^ (b0 v b1))
7271cm 61 . . . . . . . . . . . . . . 15 ((a0 v a1) ^ (b0 v b1)) = c2
7370, 72lbtr 139 . . . . . . . . . . . . . 14 (a0 ^ b0) =< c2
74 leo 158 . . . . . . . . . . . . . . . . 17 a0 =< (a0 v a2)
75 leo 158 . . . . . . . . . . . . . . . . 17 b0 =< (b0 v b2)
7674, 75le2an 169 . . . . . . . . . . . . . . . 16 (a0 ^ b0) =< ((a0 v a2) ^ (b0 v b2))
7749cm 61 . . . . . . . . . . . . . . . 16 ((a0 v a2) ^ (b0 v b2)) = c1
7876, 77lbtr 139 . . . . . . . . . . . . . . 15 (a0 ^ b0) =< c1
7978lerr 150 . . . . . . . . . . . . . 14 (a0 ^ b0) =< (c0 v c1)
8073, 79ler2an 173 . . . . . . . . . . . . 13 (a0 ^ b0) =< (c2 ^ (c0 v c1))
8180df-le2 131 . . . . . . . . . . . 12 ((a0 ^ b0) v (c2 ^ (c0 v c1))) = (c2 ^ (c0 v c1))
8281lor 70 . . . . . . . . . . 11 (b1 v ((a0 ^ b0) v (c2 ^ (c0 v c1)))) = (b1 v (c2 ^ (c0 v c1)))
8366, 67, 823tr 65 . . . . . . . . . 10 (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))) = (b1 v (c2 ^ (c0 v c1)))
8483lan 77 . . . . . . . . 9 (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v (c2 ^ (c0 v c1))))
8571ran 78 . . . . . . . . . . . . . 14 (c2 ^ (c0 v c1)) = (((a0 v a1) ^ (b0 v b1)) ^ (c0 v c1))
86 an32 83 . . . . . . . . . . . . . 14 (((a0 v a1) ^ (b0 v b1)) ^ (c0 v c1)) = (((a0 v a1) ^ (c0 v c1)) ^ (b0 v b1))
8785, 86tr 62 . . . . . . . . . . . . 13 (c2 ^ (c0 v c1)) = (((a0 v a1) ^ (c0 v c1)) ^ (b0 v b1))
8887lor 70 . . . . . . . . . . . 12 (b1 v (c2 ^ (c0 v c1))) = (b1 v (((a0 v a1) ^ (c0 v c1)) ^ (b0 v b1)))
89 leor 159 . . . . . . . . . . . . 13 b1 =< (b0 v b1)
9089ml2i 1123 . . . . . . . . . . . 12 (b1 v (((a0 v a1) ^ (c0 v c1)) ^ (b0 v b1))) = ((b1 v ((a0 v a1) ^ (c0 v c1))) ^ (b0 v b1))
91 ancom 74 . . . . . . . . . . . 12 ((b1 v ((a0 v a1) ^ (c0 v c1))) ^ (b0 v b1)) = ((b0 v b1) ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
9288, 90, 913tr 65 . . . . . . . . . . 11 (b1 v (c2 ^ (c0 v c1))) = ((b0 v b1) ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
9392lan 77 . . . . . . . . . 10 (b0 ^ (b1 v (c2 ^ (c0 v c1)))) = (b0 ^ ((b0 v b1) ^ (b1 v ((a0 v a1) ^ (c0 v c1)))))
94 anass 76 . . . . . . . . . . 11 ((b0 ^ (b0 v b1)) ^ (b1 v ((a0 v a1) ^ (c0 v c1)))) = (b0 ^ ((b0 v b1) ^ (b1 v ((a0 v a1) ^ (c0 v c1)))))
9594cm 61 . . . . . . . . . 10 (b0 ^ ((b0 v b1) ^ (b1 v ((a0 v a1) ^ (c0 v c1))))) = ((b0 ^ (b0 v b1)) ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
96 anabs 121 . . . . . . . . . . 11 (b0 ^ (b0 v b1)) = b0
9796ran 78 . . . . . . . . . 10 ((b0 ^ (b0 v b1)) ^ (b1 v ((a0 v a1) ^ (c0 v c1)))) = (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
9893, 95, 973tr 65 . . . . . . . . 9 (b0 ^ (b1 v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
9984, 98tr 62 . . . . . . . 8 (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1))))
10099cm 61 . . . . . . 7 (b0 ^ (b1 v ((a0 v a1) ^ (c0 v c1)))) = (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))))
10165, 100lbtr 139 . . . . . 6 (b0 ^ (a0 v p0)) =< (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))))
102 orass 75 . . . . . . . . . 10 (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))) = ((a0 ^ b0) v (b1 v (c2 ^ (c0 v c1))))
103 orcom 73 . . . . . . . . . 10 ((a0 ^ b0) v (b1 v (c2 ^ (c0 v c1)))) = ((b1 v (c2 ^ (c0 v c1))) v (a0 ^ b0))
104102, 103tr 62 . . . . . . . . 9 (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1))) = ((b1 v (c2 ^ (c0 v c1))) v (a0 ^ b0))
105104lan 77 . . . . . . . 8 (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1)))) = (b0 ^ ((b1 v (c2 ^ (c0 v c1))) v (a0 ^ b0)))
106 lear 161 . . . . . . . . 9 (a0 ^ b0) =< b0
107106mldual2i 1125 . . . . . . . 8 (b0 ^ ((b1 v (c2 ^ (c0 v c1))) v (a0 ^ b0))) = ((b0 ^ (b1 v (c2 ^ (c0 v c1)))) v (a0 ^ b0))
108 orcom 73 . . . . . . . 8 ((b0 ^ (b1 v (c2 ^ (c0 v c1)))) v (a0 ^ b0)) = ((a0 ^ b0) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
109105, 107, 1083tr 65 . . . . . . 7 (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1)))) = ((a0 ^ b0) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
110 lea 160 . . . . . . . 8 (a0 ^ b0) =< a0
111110leror 152 . . . . . . 7 ((a0 ^ b0) v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
112109, 111bltr 138 . . . . . 6 (b0 ^ (((a0 ^ b0) v b1) v (c2 ^ (c0 v c1)))) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
113101, 112letr 137 . . . . 5 (b0 ^ (a0 v p0)) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
114113df-le2 131 . . . 4 ((b0 ^ (a0 v p0)) v (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))) = (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
11523, 114lbtr 139 . . 3 p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
1162, 115lel2or 170 . 2 (a0 v p) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
1171, 116letr 137 1 p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
Colors of variables: term
Syntax hints:   = wb 1   =< wle 2   v wo 6   ^ wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1120  ax-arg 1151
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator