Qt Quick 2 Surface Example
The Qt Quick 2 surface example shows how to make a simple 3D surface plot using Surface3D with Qt Quick 2.
The focus in this example is on generating a surface graph from height data, so in this section we skip explaining the application creation. For more detailed QML example documentation, see Qt Quick 2 Scatter Example.
Running the Example
To run the example from Qt Creator, open the Welcome mode and select the example from Examples. For more information, visit Building and Running an Example.
Adding Data to the Graph
This example shows two methods to set data to surface graph, using the HeightMapSurfaceDataProxy and ItemModelSurfaceDataProxy. First we go through setting the data using the height map specific data proxy. It is done with the code snippet below. The proxy itself is contained in a Surface3DSeries. Inside the HeightMapSurfaceDataProxy the heightMapFile
specifies the image file containing the height data. The value properties in the proxy define the minimum and maximum values for surface area width and depth. This example shows the terrain around Tycho crater at imaginary position from 67 to 97 and from 30 to 60. Note that on the graph the scale on the Y dimension exaggerates the height.
Surface3DSeries { id: heightSeries flatShadingEnabled: false drawMode: Surface3DSeries.DrawSurface visible: false HeightMapSurfaceDataProxy { heightMapFile: ":/heightmaps/image" // We don't want the default data values set by heightmap proxy. minZValue: 30 maxZValue: 60 minXValue: 67 maxXValue: 97 } onDrawModeChanged: checkState() }
The other method to set surface data used in this example is with model mapping. We do that by first defining a ListModel
containing the data for the surface:
ListModel { id: dataModel ListElement{ longitude: "0"; latitude: "0"; height: "124"; } ListElement{ longitude: "0"; latitude: "1"; height: "125"; } ListElement{ longitude: "0"; latitude: "2"; height: "124"; } ...
Then we set up a Surface3DSeries with a ItemModelSurfaceDataProxy:
Surface3DSeries { id: surfaceSeries flatShadingEnabled: false drawMode: Surface3DSeries.DrawSurface ItemModelSurfaceDataProxy { ...
We add the actual data to the itemModel
of the ItemModelSurfaceDataProxy. We also define the roles for columns, rows and values. In this example the row holds values for longitude, column for latitude and the value is for height.
... itemModel: surfaceData.model rowRole: "longitude" columnRole: "latitude" yPosRole: "height" }
Showing Data
In the main.qml
, we set up the Surface3D element to show the data and various UI elements to illustrate few interesting features.
First is the gradient to be used for the surface, which can be defined as seen in the following snippet. With the ColorGradient we set example colors from position 0.0 to 1.0.
ColorGradient { id: surfaceGradient ColorGradientStop { position: 0.0; color: "darkslategray" } ColorGradientStop { id: middleGradient; position: 0.25; color: "peru" } ColorGradientStop { position: 1.0; color: "red" } }
This element is set into the baseGradients
property in the theme
used in Surface3D:
theme: Theme3D { type: Theme3D.ThemeStoneMoss font.family: "STCaiyun" font.pointSize: 35 colorStyle: Theme3D.ColorStyleRangeGradient baseGradients: [surfaceGradient] }
Other interesting features can be controlled with buttons.
The first button is to toggle on and off the surface grid, for which we use the following code:
onClicked: { if (surfaceSeries.drawMode & Surface3DSeries.DrawWireframe) { surfaceSeries.drawMode &= ~Surface3DSeries.DrawWireframe; heightSeries.drawMode &= ~Surface3DSeries.DrawWireframe; } else { surfaceSeries.drawMode |= Surface3DSeries.DrawWireframe; heightSeries.drawMode |= Surface3DSeries.DrawWireframe; } }
Second button is for surface shading mode, which is controlled with this code:
onClicked: { if (surfaceSeries.flatShadingEnabled === true) { surfaceSeries.flatShadingEnabled = false; heightSeries.flatShadingEnabled = false; text = "Show Flat" } else { surfaceSeries.flatShadingEnabled = true; heightSeries.flatShadingEnabled = true; text = "Show Smooth" } }
Third button is for series visibility, which is controlled with this code:
onClicked: { if (surfaceSeries.drawMode & Surface3DSeries.DrawSurface) { surfaceSeries.drawMode &= ~Surface3DSeries.DrawSurface; heightSeries.drawMode &= ~Surface3DSeries.DrawSurface; } else { surfaceSeries.drawMode |= Surface3DSeries.DrawSurface; heightSeries.drawMode |= Surface3DSeries.DrawSurface; } }
Notice that the drawMode
and flatShadingEnable
properties are set for both series.
Fourth and fifth buttons are for controlling background features.
The last button is for switching between the two series, one of which uses HeightMapSurfaceDataProxy and the other one ItemModelSurfaceDataProxy. For this we use the following code:
onClicked: { if (surfaceSeries.visible === false) { surfacePlot.axisY.max = 500.0 surfaceSeries.visible = true heightSeries.visible = false middleGradient.position = 0.25 text = "Switch to Height Map Series" } else { surfacePlot.axisY.max = 250.0 surfaceSeries.visible = false heightSeries.visible = true middleGradient.position = 0.50 text = "Switch to Item Model Series" } }
We also set the maximum value to 500 in model proxy to make the surface flatter and 250 on height map proxy to show exaggerated height. At the same time the middle color position on the gradient is modified to match the value range change.
Example Contents
Files:
© 2017 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.