Bialgebras¶
-
class
sage.categories.bialgebras.
Bialgebras
(base, name=None)¶ Bases:
sage.categories.category_types.Category_over_base_ring
The category of bialgebras
EXAMPLES:
sage: Bialgebras(ZZ) Category of bialgebras over Integer Ring sage: Bialgebras(ZZ).super_categories() [Category of algebras over Integer Ring, Category of coalgebras over Integer Ring]
-
class
Super
(base_category)¶ Bases:
sage.categories.super_modules.SuperModulesCategory
EXAMPLES:
sage: C = Algebras(QQ).Super() sage: C Category of super algebras over Rational Field sage: C.base_category() Category of algebras over Rational Field sage: sorted(C.super_categories(), key=str) [Category of graded algebras over Rational Field, Category of super modules over Rational Field] sage: AlgebrasWithBasis(QQ).Super().base_ring() Rational Field sage: HopfAlgebrasWithBasis(QQ).Super().base_ring() Rational Field
-
Bialgebras.
WithBasis
¶ alias of
BialgebrasWithBasis
-
Bialgebras.
additional_structure
()¶ Return
None
.Indeed, the category of bialgebras defines no additional structure: a morphism of coalgebras and of algebras between two bialgebras is a bialgebra morphism.
See also
Todo
This category should be a
CategoryWithAxiom
.EXAMPLES:
sage: Bialgebras(QQ).additional_structure()
-
Bialgebras.
super_categories
()¶ EXAMPLES:
sage: Bialgebras(QQ).super_categories() [Category of algebras over Rational Field, Category of coalgebras over Rational Field]
-
class