Hopf algebras¶
-
class
sage.categories.hopf_algebras.
HopfAlgebras
(base, name=None)¶ Bases:
sage.categories.category_types.Category_over_base_ring
The category of Hopf algebras
EXAMPLES:
sage: HopfAlgebras(QQ) Category of hopf algebras over Rational Field sage: HopfAlgebras(QQ).super_categories() [Category of bialgebras over Rational Field]
-
class
DualCategory
(base, name=None)¶ Bases:
sage.categories.category_types.Category_over_base_ring
The category of Hopf algebras constructed as dual of a Hopf algebra
-
class
ParentMethods
¶
-
class
-
class
HopfAlgebras.
ElementMethods
¶ -
antipode
()¶ Return the antipode of self
EXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: [a,b] = A.algebra_generators() sage: a, a.antipode() (B[(1,2,3)], B[(1,3,2)]) sage: b, b.antipode() (B[(1,3)], B[(1,3)])
-
-
class
HopfAlgebras.
Morphism
(s=None)¶ Bases:
sage.categories.category.Category
The category of Hopf algebra morphisms
-
class
HopfAlgebras.
ParentMethods
¶
-
class
HopfAlgebras.
Realizations
(category, *args)¶ Bases:
sage.categories.realizations.RealizationsCategory
-
class
ParentMethods
¶ -
antipode_by_coercion
(x)¶ Returns the image of
x
by the antipodeThis default implementation coerces to the default realization, computes the antipode there, and coerces the result back.
EXAMPLES:
sage: N = NonCommutativeSymmetricFunctions(QQ) sage: R = N.ribbon() sage: R.antipode_by_coercion.__module__ 'sage.categories.hopf_algebras' sage: R.antipode_by_coercion(R[1,3,1]) -R[2, 1, 2]
-
-
class
-
class
HopfAlgebras.
Super
(base_category)¶ Bases:
sage.categories.super_modules.SuperModulesCategory
EXAMPLES:
sage: C = Algebras(QQ).Super() sage: C Category of super algebras over Rational Field sage: C.base_category() Category of algebras over Rational Field sage: sorted(C.super_categories(), key=str) [Category of graded algebras over Rational Field, Category of super modules over Rational Field] sage: AlgebrasWithBasis(QQ).Super().base_ring() Rational Field sage: HopfAlgebrasWithBasis(QQ).Super().base_ring() Rational Field
-
class
HopfAlgebras.
TensorProducts
(category, *args)¶ Bases:
sage.categories.tensor.TensorProductsCategory
The category of Hopf algebras constructed by tensor product of Hopf algebras
-
class
ElementMethods
¶
-
class
HopfAlgebras.TensorProducts.
ParentMethods
¶
-
HopfAlgebras.TensorProducts.
extra_super_categories
()¶ EXAMPLES:
sage: C = HopfAlgebras(QQ).TensorProducts() sage: C.extra_super_categories() [Category of hopf algebras over Rational Field] sage: sorted(C.super_categories(), key=str) [Category of hopf algebras over Rational Field, Category of tensor products of algebras over Rational Field, Category of tensor products of coalgebras over Rational Field]
-
class
-
HopfAlgebras.
WithBasis
¶ alias of
HopfAlgebrasWithBasis
-
HopfAlgebras.
dual
()¶ Return the dual category
EXAMPLES:
The category of Hopf algebras over any field is self dual:
sage: C = HopfAlgebras(QQ) sage: C.dual() Category of hopf algebras over Rational Field
-
HopfAlgebras.
super_categories
()¶ EXAMPLES:
sage: HopfAlgebras(QQ).super_categories() [Category of bialgebras over Rational Field]
-
class