The PPL (Parma Polyhedra Library) backend for polyhedral computations¶
-
class
sage.geometry.polyhedron.backend_ppl.Polyhedron_QQ_ppl(parent, Vrep, Hrep, **kwds)¶ Bases:
sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl,sage.geometry.polyhedron.base_QQ.Polyhedron_QQPolyhedra over \(\QQ\) with ppl
INPUT:
Vrep– a list[vertices, rays, lines]orNone.Hrep– a list[ieqs, eqns]orNone.
EXAMPLES:
sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[], ....: backend='ppl', base_ring=QQ) sage: TestSuite(p).run(skip='_test_pickling')
-
class
sage.geometry.polyhedron.backend_ppl.Polyhedron_ZZ_ppl(parent, Vrep, Hrep, **kwds)¶ Bases:
sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl,sage.geometry.polyhedron.base_ZZ.Polyhedron_ZZPolyhedra over \(\ZZ\) with ppl
INPUT:
Vrep– a list[vertices, rays, lines]orNone.Hrep– a list[ieqs, eqns]orNone.
EXAMPLES:
sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[]) ....: backend='ppl', base_ring=ZZ) sage: TestSuite(p).run(skip='_test_pickling')
-
class
sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl(parent, Vrep, Hrep, **kwds)¶ Bases:
sage.geometry.polyhedron.base.Polyhedron_basePolyhedra with ppl
INPUT:
Vrep– a list[vertices, rays, lines]orNone.Hrep– a list[ieqs, eqns]orNone.
EXAMPLES:
sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[], backend='ppl') sage: TestSuite(p).run()