Function Field Elements¶
AUTHORS:
- William Stein: initial version
- Robert Bradshaw (2010-05-27): cythonize function field elements
- Julian Rueth (2011-06-28): treat zero correctly
- Maarten Derickx (2011-09-11): added doctests, fixed pickling
-
class
sage.rings.function_field.function_field_element.
FunctionFieldElement
¶ Bases:
sage.structure.element.FieldElement
The abstract base class for function field elements.
EXAMPLES:
sage: t = FunctionField(QQ,'t').gen() sage: isinstance(t, sage.rings.function_field.function_field_element.FunctionFieldElement) True
-
characteristic_polynomial
(*args, **kwds)¶ Return the characteristic polynomial of this function field element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.characteristic_polynomial('W') W - x sage: y.characteristic_polynomial('W') W^2 - x*W + 4*x^3 sage: z.characteristic_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
charpoly
(*args, **kwds)¶ Return the characteristic polynomial of this function field element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.characteristic_polynomial('W') W - x sage: y.characteristic_polynomial('W') W^2 - x*W + 4*x^3 sage: z.characteristic_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
is_integral
()¶ Determine if self is integral over the maximal order of the base field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.is_integral() True sage: (y/x).is_integral() True sage: (y/x)^2 - (y/x) + 4*x 0 sage: (y/x^2).is_integral() False sage: (y/x).minimal_polynomial('W') W^2 - W + 4*x
-
matrix
(base=None)¶ Return the matrix of multiplication by this element, interpreting this element as an element of a vector space over
base
.INPUT:
base
– a function field (default:None
), ifNone
, then the matrix is formed over the base field of this function field.
EXAMPLES:
A rational function field:
sage: K.<t> = FunctionField(QQ) sage: t.matrix() [t] sage: (1/(t+1)).matrix() [1/(t + 1)]
Now an example in a nontrivial extension of a rational function field:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.matrix() [ 0 1] [-4*x^3 x] sage: y.matrix().charpoly('Z') Z^2 - x*Z + 4*x^3
An example in a relative extension, where neither function field is rational:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: M.<T> = L[] sage: Z.<alpha> = L.extension(T^3 - y^2*T + x) sage: alpha.matrix() [ 0 1 0] [ 0 0 1] [ -x x*y - 4*x^3 0] sage: alpha.matrix(K) [ 0 0 1 0 0 0] [ 0 0 0 1 0 0] [ 0 0 0 0 1 0] [ 0 0 0 0 0 1] [ -x 0 -4*x^3 x 0 0] [ 0 -x -4*x^4 -4*x^3 + x^2 0 0] sage: alpha.matrix(Z) [alpha]
We show that this matrix does indeed work as expected when making a vector space from a function field:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)) sage: V, from_V, to_V = L.vector_space() sage: y5 = to_V(y^5); y5 ((x^4 + 1)/x, 2*x, 0, 0, 0) sage: y4y = to_V(y^4) * y.matrix(); y4y ((x^4 + 1)/x, 2*x, 0, 0, 0) sage: y5 == y4y True
-
minimal_polynomial
(*args, **kwds)¶ Return the minimal polynomial of this function field element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.minimal_polynomial('W') W - x sage: y.minimal_polynomial('W') W^2 - x*W + 4*x^3 sage: z.minimal_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
minpoly
(*args, **kwds)¶ Return the minimal polynomial of this function field element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.minimal_polynomial('W') W - x sage: y.minimal_polynomial('W') W^2 - x*W + 4*x^3 sage: z.minimal_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
norm
()¶ Return the norm of this function field element.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.norm() 4*x^3
The norm is relative:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: z.norm() -x sage: z.norm().parent() Function field in y defined by y^2 - x*y + 4*x^3
-
trace
()¶ Return the trace of this function field element.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.trace() x
-
-
class
sage.rings.function_field.function_field_element.
FunctionFieldElement_polymod
¶ Bases:
sage.rings.function_field.function_field_element.FunctionFieldElement
Elements of a finite extension of a function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: x*y + 1/x^3 x*y + 1/x^3
-
element
()¶ Return the underlying polynomial that represents this element.
- EXAMPLES::
- sage: K.<x> = FunctionField(QQ); R.<T> = K[] sage: L.<y> = K.extension(T^2 - x*T + 4*x^3) sage: f = y/x^2 + x/(x^2+1); f 1/x^2*y + x/(x^2 + 1) sage: f.element() 1/x^2*y + x/(x^2 + 1) sage: type(f.element()) <class ‘sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category.element_class’>
-
list
()¶ Return a list of coefficients of self, i.e., if self is an element of a function field K[y]/(f(y)), then return the coefficients of the reduced presentation as a polynomial in K[y].
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: a = ~(2*y + 1/x); a (-x^2/(8*x^5 + x^2 + 1/2))*y + (2*x^3 + x)/(16*x^5 + 2*x^2 + 1) sage: a.list() [(2*x^3 + x)/(16*x^5 + 2*x^2 + 1), -x^2/(8*x^5 + x^2 + 1/2)] sage: (x*y).list() [0, x]
-
-
class
sage.rings.function_field.function_field_element.
FunctionFieldElement_rational
¶ Bases:
sage.rings.function_field.function_field_element.FunctionFieldElement
Elements of a rational function field.
EXAMPLES:
sage: K.<t> = FunctionField(QQ); K Rational function field in t over Rational Field
-
denominator
()¶ EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t+1) / (t^2 - 1/3); f (t + 1)/(t^2 - 1/3) sage: f.denominator() t^2 - 1/3
-
element
()¶ Return the underlying fraction field element that represents this element.
EXAMPLES:
sage: K.<t> = FunctionField(GF(7)) sage: t.element() t sage: type(t.element()) <type 'sage.rings.fraction_field_FpT.FpTElement'> sage: K.<t> = FunctionField(GF(131101)) sage: t.element() t sage: type(t.element()) <class 'sage.rings.fraction_field_element.FractionFieldElement_1poly_field'>
-
factor
()¶ Factor this rational function.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t+1) / (t^2 - 1/3) sage: f.factor() (t + 1) * (t^2 - 1/3)^-1 sage: (7*f).factor() (7) * (t + 1) * (t^2 - 1/3)^-1 sage: ((7*f).factor()).unit() 7 sage: (f^3).factor() (t + 1)^3 * (t^2 - 1/3)^-3
-
inverse_mod
(I)¶ Return an inverse of self modulo the integral ideal \(I\), if defined, i.e., if \(I\) and self together generate the unit ideal.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: O = K.maximal_order(); I = O.ideal(x^2+1) sage: t = O(x+1).inverse_mod(I); t -1/2*x + 1/2 sage: (t*(x+1) - 1) in I True
-
is_square
()¶ Returns whether self is a square.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: t.is_square() False sage: (t^2/4).is_square() True sage: f = 9 * (t+1)^6 / (t^2 - 2*t + 1); f.is_square() True sage: K.<t> = FunctionField(GF(5)) sage: (-t^2).is_square() True sage: (-t^2).sqrt() 2*t
-
list
()¶ Return a list of coefficients of self, i.e., if self is an element of a function field K[y]/(f(y)), then return the coefficients of the reduced presentation as a polynomial in K[y]. Since self is a member of a rational function field, this simply returns the list \([self]\)
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: t.list() [t]
-
numerator
()¶ EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t+1) / (t^2 - 1/3); f (t + 1)/(t^2 - 1/3) sage: f.numerator() t + 1
-
sqrt
(all=False)¶ Returns the square root of self.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = t^2 - 2 + 1/t^2; f.sqrt() (t^2 - 1)/t sage: f = t^2; f.sqrt(all=True) [t, -t]
-
valuation
(v)¶ EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t-1)^2 * (t+1) / (t^2 - 1/3)^3 sage: f.valuation(t-1) 2 sage: f.valuation(t) 0 sage: f.valuation(t^2 - 1/3) -3
-
-
sage.rings.function_field.function_field_element.
is_FunctionFieldElement
(x)¶ Return True if x is any type of function field element.
EXAMPLES:
sage: t = FunctionField(QQ,'t').gen() sage: sage.rings.function_field.function_field_element.is_FunctionFieldElement(t) True sage: sage.rings.function_field.function_field_element.is_FunctionFieldElement(0) False
-
sage.rings.function_field.function_field_element.
make_FunctionFieldElement
(parent, element_class, representing_element)¶ Used for unpickling FunctionFieldElement objects (and subclasses).
EXAMPLES:
sage: from sage.rings.function_field.function_field_element import make_FunctionFieldElement sage: K.<x> = FunctionField(QQ) sage: make_FunctionFieldElement(K, K._element_class, (x+1)/x) (x + 1)/x